科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

A High-Efficiency Micro-Channel Regenerative Heat Exchanger for Fluid Processing

O. Yildirim, and Z. Guo
Intellectual Ventures Laboratories
Bellevue, WA

Regenerative heat exchangers (RHX) find widespread applications in liquid food or pharmaceutical processing as well as in reaction engineering. Whereas \"large\" RHX systems have been in use for a long time, their smaller micro-channel counterparts are a more recent area of interest. Here, we describe the design and development of a novel micro-channel counter-current regenerative heat ...

Analysis of Microwave Radiation for Heating

J. Crompton, S. Yushanov, L. Gritter, and K. Koppenhoefer
AltaSim Technologies, LLC.
Columbus, OH

Microwave heating is an important process for many commercial, industrial and household applications. In microwave heating applications, the energy is introduced directly into the volume of the material. As a consequence the quality of the process is highly dependent on the uniformity of the electromagnetic field distribution. Thus, developing a uniform electromagnetic field inside the ...

Development of Tiny Fuel Cells for Micro-devices on the Basis of Simulation Results

S. Tominaka
International Center for Materials Nanoarchitectonics
National Institute for Materials Science
Japan

For the successful exploitation of microdevices such as microsensors, development of micro-power sources is strongly required. In this view, microbatteries and microfuel cells have been developed. Here the concept of on-chip fuel cells, which consist of all the components necessary for power generation integrated on a chip, is introduced. Then, in order to improve their performance, experimental ...

COMSOL Multiphysics in Modeling MOCVDs

Y. Shimogaki
Shimogaki Laboratory
Department of Materials Engineering,
The University of Tokyo
Japan

This paper showed that: * SAG-MOCVD is a powerful tool to fabricate OEICs and is also effective to extract true surface kinetics during MOCVD. * GaAs-MOCVD process was examined by SAG analysis where it was seen that below 600ºC, surface kinetics shows non-linear behavior. * Surface reaction rate constant of adsorbed species was constant against offset angle, while adsorption equilibrium ...

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...

Numerical Simulation Study on the Heat and Mass Transfer Through Multi-Layer Textile Assemblies

S.F. Neves[1], J.J.B.L.M. Campos[1], T.S. Mayor[2]
[1]CEFT – Transport Phenomena Research Center, Chemical Engineering Department, Porto University, Porto, Portugal
[2]CeNTI - Centre for Nanotechology and Smart Materials, Rua Fernando Mesquita, Vila Nova de Famalicão, Portugal

A clothing system should offer the user a period of relatively comfort. However, changes in the ambient conditions over day affect the heat and mass transport in the system, influencing the user comfort perception. In order to gather information to allow the optimization of clothing systems, it is essential to understand the heat and moisture transfer occurring across multi-layer textiles. For ...

Magnetic and Circuital Modeling of a Low Harmonic Pollution Three Phase Transformer

E. Scotoni[1], C. Tozzo[2], D. Zoccarato[1], F. Paganini[1]
[1]TMC Italia, Busto Arsizio, Italy
[2]COMSOL, Brescia, Italy

A three phase transformer with very low harmonic pollution transferred back to power line is here presented. In fact, thanks to the described setup, intermediate harmonics (5th and 7th) are not going out back to the power line feeding the primary. These results has been extensively validated versus measurements performed on produced and shipped machine. With these results, TMC is then featuring ...

Numerical Study of the Scattering of a Short-Pulse Plane Wave by a Buried Sphere in a Lossy Medium

F. Frezza[1], F. Mangini[1], M. Muzi[2], P. Nocito[3], E. Stoja[1], N. Tedeschi[1]
[1]Department of Information Engineering, Electronics and Telecommunications, "La Sapienza" University of Rome, Rome, Italy
[2]Institute of Advanced Biomedical Imaging, "G. d'Annuzio" University Fondation, University "G. d'Annuzio" Chieti-Pescara, Chieti, Italy
[3]Istituto Superiore C.T.I., Communications Department, Ministry of Economic Development, Rome, Italy

The scattering by a buried sphere in the frequency domain with the use of the Finite Element Method (FEM) implemented by COMSOL Multiphysics, is analyzed. A short-pulse is used as an excitation with the spectrum spanning from 50 MHz to 1 GHz. In order to validate our results, a comparison with data available in the literature is presented, in the simple case of a perfectly-conducting (PEC) ...

Modeling Thermal Bridging at Interface Conditions: Analysis of Solutions for Reducing Thermal Bridges Effects on Building Energy Consumption

C. Balocco[1], E. Marmonti[1]
[1]Dipartimento di Energetica, Università di Firenze, Firenze, Italy

In Europe considerable building activity can be expected over the coming decades; Net Zero Energy Buildings refers to a building with minimal power, until maximum 15 kW/m^2. In both cases this requires very well insulated buildings with minimal thermal bridges. Concrete balconies, that extend the floor slab through the building envelope, are a common example of thermal bridging, where structural ...

A Model of Electric Field Assisted Capillarity for the Fabrication of Hollow Microstructures

C. Tonry[1], M. K. Patel[1], C. Bailey[1], M. P.Y. Desmuliez[2], W. Yu[3]
[1]Computational Mechanics and Reliability Group (CMRG), School of Computing and Mathematical Sciences, University of Greenwich, London, United Kingdom
[2]Microsystems Engineering Centre (MISCEC, School of Engineering & Physical Sciences, Heriot Watt University, Earl Mountbatten Building, Edinburgh, United Kingdom
[3]State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, China

Electric Field Assisted Capillarity (EFAC) is a novel technique for the fabrication of hollow polymer microstructures. It has advantages over current methods as it is a single step process. Hollow microstructures have many uses in industry from microchannels and microcapsules in BioMEMS to fibre-optical waveguides. It makes use of the dielectric properties of polymers combined with a heavily ...

Quick Search

3221 - 3230 of 3645 First | < Previous | Next > | Last