科技论文和演示页面包括了 COMSOL 全球用户年会上所有的用户演示文稿。这些演示文稿介绍了 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计,研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。您可以使用“快速搜索”来查找与您研究领域相关的演示文稿。

Finite Element Study of the Mass Transfer in Annular Reactor - new

Y. M. S. El-Shazly[1], S. W. Eletriby[1]
[1]Alexandria University, Alexandria, Alexandria, Egypt.

The annular reactor is a very useful design to carry many chemical reactions. In this study, COMSOL Multiphysics® software was used to study the isothermal mass transfer from the inner side of the outer tube of the annular reactor in the range of 200

Multiphysics Approach of the Performance of a Domestic Oven

N. Garcia-Polanco[1], J. Capablo[1], J. Doyle[1]
[1]Whirlpool Corporation, Cassinetta di Biandronno (VA), Italy

The heat and mass transfer processes occurring in a domestic oven is in detailed analyzed in this work, with the final objective of improving the ...

Modeling of Expanding Metal Foams - new

B. Chinè[1,2], M. Monno[3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

Metal foams are interesting materials with many potential applications. They are characterized by a cellular structure represented by a metal or metal ...

Desorption Simulation of a Highly Dynamic Metal Hydride Storage System

D. Wenger[1], W. Polifke[2], and E. Schmidt-Ihn[3]
[1]Wenger Engineering GmbH, Ulm, Germany
[2]Technical University of Munich, Munich, Germany
[3]Daimler AG, Kirchheim/Teck, Germany

Metal hydrides are a widely-used method for storing and releasing hydrogen chemically under moderate conditions. This paper will present how highly ...

Simulation Of A Hydrogen Permeation Test On A Multilayer Membrane

J. Bouhattate, E. Legrand, A. Oudriss, S. Frappart, J. Creus, and X. Feaugas
Laboratoire d’Etude des Matériaux en Milieu Agressif, LEMMA, Bat. Marie Curie, La Rochelle, France

To understand a metal susceptibility to Hydrogen Embrittlement (HE), it is important to quantify the diffusion of hydrogen through a metallic membrane. ...

Multiphysics: Fluid Mixing and Brine Pool Formation for Economic Geology Applications - new

C. Schardt[1]
[1]University of Minnesota-Duluth, Duluth, MN, USA

Significant submarine mineral deposits form when hot, metal-laden, saline fluids emerge onto the seafloor and mix with ambient seawater. Resulting ...

COMSOL application in modeling PEMFC transients

X. Li
Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Beijing, China

We studied the transient characteristics of PEMFC and water transport during PEMFC start-up, concerning the following aspects: Effect of air stoichiometry change on transient behavior of PEMFC, Transient behavior of water transport during PEMFC start-up, and high temperature PEMFC modeling.

The Effect of Composition on the Role of Evaporation During Oil Recovery by Combustion

N. Khoshnevis Gargar[1], A. Mailybaev[2], D. Marchesin[2], H. Bruining[1]
[1] Delft University of Technology, Delft, The Netherlands
[2] Instituto Nacional de Matematica Pura e Aplicada, Rio de Janeiro, Brazil

One of the methods to recover oil from medium and low viscosity in complex reservoirs uses air injection leading to oil combustion. In this case the ...

Optimization of the Herringbone Type Micromixer Using Numerical Modelling and Validation by Measurements - new

E. Tóth[1], K. Iván[1], P. Fürjes[2]
[1]Pázmány Péter Catholic University, Budapest, Hungary
[2]Research Centre for Natural Sciences Institute for Technical Physics and Materials Science Hungarian Academy of Sciences, Budapest, Hungary

COMSOL Multiphysics® software was used in this study to simulate mixing by diffusion and by secondary flow. Particle tracing model was applied to simulate the mixing of cells in the microchannel. Results agreed well with the measurement, an optimal herring-bone structure was proposed for integration into a bioanalytical system.

Deep Desulfurization of Diesel Using a Single-Phase Micro-Reactor

G. Jovonavic[1], J. Jones[1], and A. Yokochi[1]
[1]School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA

This paper describes the benefits of computational fluid dynamics in the development of a microreactor used in the desulfurization of aromatic compounds. It is crucial to verify diffusion and extinction coefficients to ensure accurate simulation results prior to experiments. COMSOL Multiphysics was used to model the behavior of all of the possible species present and reactions that may occur.