Quick Search

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Design and Simulation of a Cantilever Array for Fluid Flow Sensing Applications

K. Kavitha[1], Y. R. Manjoosha[1], C. S. Sukanya[1], K. Saranya[1], K. Chandra Devi[1], M. Alagappan[1], A. Gupta[1]
[1]Department of Biomedical Engineering, PSG college of technology, Coimbatore, TamilNadu, India

The biological hair-cell is a modular building block of a rich variety of biological sensors. These sensors are responsive to various mechanical properties like vibration, touch, gravitational forces, etc., especially flow. Using micro and nano-fabrication technology, an engineering equivalent of such sensors have been reported to be fabricated, imitating the structure and transfer function of ...

Experimentally Matched Finite Element Modeling of Thermally Actuated SOI MEMS Micro-Grippers Using COMSOL Multiphysics

M. Guvench[1], and J. Crosby[1]
[1]University of Southern Maine, Gorham, Maine, USA

In “Micro-Electro-Mechanical-Systems” shortly known as MEMS, one of the most important and effective principle of creating transduction of electrical power to displacement force is thermal expansion. A slim beam of MEMS material, typically Silicon, is heated by the application of electrical current via Joule heating; it expands and creates motion. In the design of many MEMS devices ...

Multi-Domain Analysis of Silicon Structures for MEMS Based-Sensors

N. Bhalla[1], S. Li[2], and D. Chung[1]
[1]Chung Yuan Christian University, Chungli,Taiwan
[2]National Tsing Hua University, Hsinchu, Taiwan

Investigation in this paper aims at performing Mechanical Stress Strain analysis, Thermal, Piezoresistive and Piezoeletric analysis of Silicon Structures using COMSOL. The simulation results have been cross checked by mathematical calculation.

FEM Based Estimation of Biological Interaction Using a Cantilever Array Sensor

S. Logeshkumar, L. Lavanya, G. Anju, and M. Alagappan
PSG College of Technology
Tamil Nadu, India

In the model silicon nanorods are designed as cantilever array and coated with thin film of aluminum or aluminum nitride, to be characterized, thus, adding a detectable mass and altering the cantilever resistance to bending. The simulated results show that when films of different thickness are placed on the cantilever, there is a corresponding change in the resonant frequency and the ...

Optical Manipulation of Microscopic Objects

R. Ozawa
Yokohama University

In recent years, optical manipulation using optical radiation pressure has been widely studied. In this study, the radiation pressure exerted on various kinds of microscopic objects with different laser beams was evaluated by COMSOL Multiphysics software. By changing beam shapes, microscopic objects can be trapped and rotated. This paper is in Japanese.

A Model of Electric Field Assisted Capillarity for the Fabrication of Hollow Microstructures

C. Tonry[1], M. K. Patel[1], C. Bailey[1], M. P.Y. Desmuliez[2], W. Yu[3]
[1]Computational Mechanics and Reliability Group (CMRG), School of Computing and Mathematical Sciences, University of Greenwich, London, United Kingdom
[2]Microsystems Engineering Centre (MISCEC, School of Engineering & Physical Sciences, Heriot Watt University, Earl Mountbatten Building, Edinburgh, United Kingdom
[3]State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, China

Electric Field Assisted Capillarity (EFAC) is a novel technique for the fabrication of hollow polymer microstructures. It has advantages over current methods as it is a single step process. Hollow microstructures have many uses in industry from microchannels and microcapsules in BioMEMS to fibre-optical waveguides. It makes use of the dielectric properties of polymers combined with a heavily ...

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving

M. Baù[1], V. Ferrari[1], and D. Marioli[1]
[1]Department of Electronics for Automation, University of Brescia, Brescia, Italy

A contactless electromagnetic principle for the excitation of mechanical vibrations in resonant structures has been investigated. The principle relies on no specific magnetic property of the resonator except electrical conductivity and can be adopted for employing the structures as resonant sensors for measurements either in environments not compliant with the requirements of active electronics ...

Multiphysics Modelling of a Micro Valve

F. Bircher[1] and P. Marmet[1]

[1]Institute of Print Technology, Bern University of Applied Sciences, Burgdorf, Switzerland

Electromagnetic micro valves are currently developed empirically or the different physics are treated separately. To accelerate the development-process and for a better understanding of the overall system, a multiphysics simulation is built up. This simulation considers the electromagnetics, the electronics (including the control of the process), the mechanics and the fluidics with respect to the ...

Design and Development of Microsystems within a Corporate Research Environment by Utilizing Comsol Multiphysics

A. Frey
Siemens AG
Corporate Research & Technologies
Munich, Germany

Alexander Frey received his M.A. degree from the University of Texas, Austin, in 1994, the Dipl. Phys. degree from the University of Wuerzburg, Germany in 1997 and the PhD from the Saarland University, Germany in 2010. In 1997 he joined Research Laboratories of Siemens working on the design of DRAM sensing circuits. In 1999 he joined Corporate Research, Infineon, Munich, Germany. He was engaged ...

Xylophone Bar Magnetometry and Inertial-grade MEMS Optimisation: a Multiphysics Approach

H. T. D. Grigg, and B. J. Gallacher
Microsystems Group
Newcastle University
Newcastle upon Tyne
Tyne and Wear, UK

This paper presents ongoing research aimed at development of a MEMS magnetometer capable of nanoTesla sensitivity. Such a device would pave the way for inertial-grade MEMS IMUs. A resonant sensor is proposed, based on a Xylophone Bar sense element, and is analysed both directly and via COMSOL. Mode shapes and frequencies are found as functions of geometric parameters, and the results used ...