科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Design and Analysis of MEMS Micro Mirror using Electro Thermal Actuators

L. Sujatha[1], D. K. Balasubramanian[2], V. S. Selvakumar[1]
[1]Rajalakshmi Engineering College, Chennai, India
[2]University of Central Florida, Orlando, Florida, United States

Micro Mirror is a versatile device which has been gaining popularity and also the importance of MEMS techniques to develop such devices. These mirrors find applications in fields such as optical switching, display and in medical fields for non-invasive imaging. A thermally actuated mirror moves in either vertical or horizontal directions for the given orientation. The ends of thermal actuators ...

Design and Simulation of MEMS based Micro Pressure Sensor

P. Acharya[1]
[1]B.V.Bhoomaraddi College of Engineerring & Technology, Hubli, Karnataka, India

The world is getting digitalized, demands for new and emerging technologies have reached its peak, and customer demands have taken a U-turn. To cope with such unique requirements many systems and system devices are into the market and one of such enhancing technology is MEMS. MEMS are systems of small size, light weight, enhanced performance and reliability finding widest of applications in ...

Experimentally Matched Finite Element Modeling of Thermally Actuated SOI MEMS Micro-Grippers Using COMSOL Multiphysics

M. Guvench[1], and J. Crosby[1]
[1]University of Southern Maine, Gorham, Maine, USA

In “Micro-Electro-Mechanical-Systems” shortly known as MEMS, one of the most important and effective principle of creating transduction of electrical power to displacement force is thermal expansion. A slim beam of MEMS material, typically Silicon, is heated by the application of electrical current via Joule heating; it expands and creates motion. In the design of many MEMS devices ...

Design and Optimization of an All Optically Driven Phase Correction MEMS Deformable Mirror Device using Finite Element Analysis

V. Mathur[1], K. Anglin[1], V.S. Prasher[1], K. Termkoa[1], S.R. Vangala[1], X. Qian[1], J. Sherwood[1], W.D. Goodhue[1], B. Haji-Saeed[2], and J. Khoury[2]

[1]Photonics Center, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
[2]Air Force Research Laboratory/Sensors Directorate, Hanscom Air Force Base, Massachusetts, USA

Optically addressable MEMS mirrors are required for future high density adaptive optics array systems. We have demonstrated a novel technique of achieving this by actuating low stress Silicon Nitride micro mirrors via cascaded wafer bonded Gallium Arsenide photo detectors on Gallium Phosphide. In the work reported here, we discuss the key design parameters of the device, and present the finite ...

Powerful automation and optimization methods for Material- and Process analysis with COMSOL Multiphysics and Matlab

T. Frommelt
SGL Group, Technology & Innovation, Meitingen, Germany

Thomas Frommelt received his PhD in physics in 2007 from the University of Augsburg for experimental work and simulation analysis on acoustically driven microfluidic mixing. In 2008, he joined the SGL Group and introduced COMSOL Multiphysics as the tool for flexible equation based modelling. Since then, he has focused on carbon material and process simulation employing methods of optimization and ...

Multiphysics Modeling of Nanoparticle Detection - Current Status and Collaboration Sought

D. Krizaj[1], I. Iskra[2], Z. Topcagic[1], and M. Remskar[2]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
[2]Institut Jozef Stefan, Ljubljana, Slovenia

We are developing nanoparticle detector for airborn particles. The detection principle is based on condensation of nanoparticles forming micron sized water droplets and detection of the droplets by a capacitive type nanodetector. We have successfully performed some experimental evaluations of the detection principle and are in the stage of optimization of several parts of the system. As shown ...

Single Crystal Diamond NEMS Switch

M. Liao
Optical and Electronic Materials Unit
National Institute for Materials Science
Japan

A single-crystal diamond NEMS switch was fabricated while batch production of SCD MEMS/NEMS structures were developed. The diamond NEMS switches exhibit high performance with respect to high controllability, high reproducibility, and good reliability. Modeling and simulations were made that were consistent with experiments.

COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination

M. Olea[1], S. Odiba[1], S. Hodgson[1], A. Adgar[1]
[1]School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom

Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor air quality. They includes acetone, benzene, ethylene glycol, formaldehyde, methylene chloride, ...

A Model of Electric Field Assisted Capillarity for the Fabrication of Hollow Microstructures

C. Tonry[1], M. K. Patel[1], C. Bailey[1], M. P.Y. Desmuliez[2], W. Yu[3]
[1]Computational Mechanics and Reliability Group (CMRG), School of Computing and Mathematical Sciences, University of Greenwich, London, United Kingdom
[2]Microsystems Engineering Centre (MISCEC, School of Engineering & Physical Sciences, Heriot Watt University, Earl Mountbatten Building, Edinburgh, United Kingdom
[3]State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, China

Electric Field Assisted Capillarity (EFAC) is a novel technique for the fabrication of hollow polymer microstructures. It has advantages over current methods as it is a single step process. Hollow microstructures have many uses in industry from microchannels and microcapsules in BioMEMS to fibre-optical waveguides. It makes use of the dielectric properties of polymers combined with a heavily ...

Design and Simulation of a Cantilever Array for Fluid Flow Sensing Applications

K. Kavitha[1], Y. R. Manjoosha[1], C. S. Sukanya[1], K. Saranya[1], K. Chandra Devi[1], M. Alagappan[1], A. Gupta[1]
[1]Department of Biomedical Engineering, PSG college of technology, Coimbatore, TamilNadu, India

The biological hair-cell is a modular building block of a rich variety of biological sensors. These sensors are responsive to various mechanical properties like vibration, touch, gravitational forces, etc., especially flow. Using micro and nano-fabrication technology, an engineering equivalent of such sensors have been reported to be fabricated, imitating the structure and transfer function of ...

Quick Search