案例集锦

COMSOL Multiphysics 案例库模型来自广泛的应用领域,包括电气、机械、流体和化工等行业。您可以下载现成即可使用的模型,以及详细的建模步骤说明,作为您建模工作的起点。请使用“快速搜索”查找与您的专业领域相关的模型,并登录或创建一个与有效的 COMSOL 许可证相关联的 COMSOL Access 帐户,下载模型文件。

Thermal Microactuator

This tutorial model of a two-hot-arm thermal actuator couples three different physics phenomena: electric current conduction, heat conduction with heat generation, and structural stresses and strains due to thermal expansion. In this model version, the geometry is parameterized so that the effect of varying the actuator's dimensions can be analyzed.

Cylinder Roller in Contact: A Benchmark Study

Consider an infinitely long steel cylinder resting on a flat aluminum foundation, where both structures are elastic. The cylinder is subjected to a point load along its top. The objective of this study is to find the contact pressure distribution and the length of contact between the foundation and the cylinder. An analytical solution exists, and this model includes a comparison against the ...

Fluid-Structure Interaction in Aluminum Extrusion

In massive forming processes like rolling or extrusion, metal alloys are deformed in a hot solid state with material flowing under ideally plastic conditions. Such processes can be simulated effectively using computational fluid dynamics, where the material is considered as a fluid with a very high viscosity that depends on velocity and temperature. Internal friction of the moving material acts ...

Viscoelastic Structural Damper

Damping elements involving layers of viscoelastic materials are often used for reduction of seismic and wind induced vibrations in buildings and other tall structures. The common feature is that the frequency of the forced vibrations is low. This model studies a forced response of a typical viscoelastic damper. The analysis involves two cases: a frequency response analysis and a time-dependent ...

Thermal Stresses in a Layered Plate

The thermal stress in a layered plate is studied in this example. A plate consisting of two layers, a coating and a substrate layer is stress and strain free at 800 degrees C. The temperature of the plate is reduced to 150 degrees C and thermal stresses are induced. A third layer, the carrier layer, is added and the thermal stresses in the coating and a substrate layer are added as an initial ...

Nonlinear Magnetostrictive Transducer

Magnetostrictive transduction is used in sonars, acoustic devices, active vibration and position control and fuel injection systems. The transducer has a steel housing enclosing a drive coil. A magnetostrictive material is placed in the core which works as an actuator when a magnetic field is produced by passing a current through the drive coil. Magnetostrictive material exhibits free strain ...

Peristaltic Pump

In a peristaltic pump, rotating rollers squeeze a flexible tube. As the rollers move along the tube, the fluid in the tube follows the motion. The main advantage of the peristaltic pump is that no seals, valves or other internal parts ever touch the fluid. Due to their cleanliness, peristaltic pumps have found many applications in the pharmaceutical, chemical, biomedical and food industries. ...

Surface Resistor: Thermo-Mechanical Analysis

The drive for miniaturizing electronic devices has resulted in today’s extensive use of surface-mount electronic components. An important aspect in electronics design and the choice of materials is a product’s durability and lifetime. For surface-mount resistors and other components producing heat it is a well-known problem that temperature cycling can lead to cracks propagating through the ...

Thermal Expansion in a MEMS Device

This model analyzes the thermal expansion in a MEMS device, such as a microgyroscope, where thermal expansion should be minimized. The device is made from the copper-beryllium alloy UNS C17500 and uses temperature-dependent material properties from the Material Library. The purpose of this model is to exemplify the use of the Material Library in COMSOL Multiphysics. This library contains more ...

Viscoelastic Material Model

Viscoelastic materials have a time-dependent response, even if the loading is constant. Many polymers and biological tissues exhibit such a behavior. Linear viscoelasticity is a commonly used approximation, where the stress depends linearly on the strain and its time derivatives. For many materials, the viscoelastic properties have a strong dependence on the temperature. A common assumption is ...

Quick Search