科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Modeling Mechanical Property Changes During Heating of Carrot Tissue - A Microscale Approach

S. Kadam[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Turgor pressure loss and pectin degradation result in texture loss during cooking of plant based materials. To simulate texture loss, a simultaneous heat and moisture transfer, pectin degradation in the cell wall material and solid mechanical model was developed at the microscale using finite elements to predict the homogenized Young’s Modulus of the carrot tissue during heating. The model ...

Simulations of Heat and Mass Transport During Biomass Conversion Processes Using 3D Biomass Particle Models with Realistic Morphology and Resolved Microstructure

P. Ciesielski[1], M. Crowley[1], L. Thompson[1], B. Donohoe[1], D. Robichaud[2], A. Sanders[3], M. Nimlos[2], T. Foust[2]
[1]Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
[2]National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA
[3]Quantum Electronics & Photonics Division, National Institute of Standards & Technology, Boulder, CO, USA

Predictive simulations of biomass conversion processes will improve their technical performance and reduce economic uncertainty surrounding industrialization of biofuels production. The majority of present conversion simulations treat the biomass feedstock with simplifying assumptions that neglect important characteristics that are unique to biomass particles. These characteristics, including ...

Near-Wall Dynamics of Microbubbles in an Acoustical Trap

L. Wright[1], G. Memoli[1], P. Jones[2], E. Stride[3]
[1]National Physical Laboratory, Teddington, UK
[2]University College London, London, UK
[3]University of Oxford, Oxford, UK

Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale sensors. Drug delivery with bubbles involves sonication at high frequency close to a boundary, and sensing with ...

Optimization of Architectured Structures in Building for Harness, Storage, and Release of Energy

C. Thoumyre[1], P. Lhuissier[1], L. Salvo[1], G. Bienvenu[2], M. Kermarrec[2]
[1]University Grenoble Alpes, SIMaP, Grenoble, France
[2]Hevatech, Ville-la-Grand, France

The problem of storage, and release of thermal energy is an important challenge in various industrial fields. Several systems for thermal energy storage exist like phase change materials (PCM) and thermochemical storage [1]. The first system usually addresses short term storage (day duration) while thermochemical storage are very interesting for longer duration (seasonal storage). However, ...

Optimization of Micro-Structured Waveguides in Lithium Niobate (Z-Cut)

H. Karakuzu[1], M. Dubov[1], S. Boscolo[1]
[1] Aston University, Birmingham, UK

We present an optimization procedure to improve the propagation properties of the depressed-cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm ...

Numerical Analysis of the Self-Heating Behaviour of Coal Dust Accumulations

D.Wu[1], E. Van den Bulck[1]
[1]Katholieke Universiteit Leuven, Department of Mechanical Engineering, KU Leuven, Belgium

Introduction Self-heating behaviour of dust accumulations is a multiphysics field coupled heat and mass transfer in the porous media. A typical experimental apparatus with a hot storage oven and mesh wire baskets has been taken as the study object. The influence of gas flow velocity, oxygen concentration and ambient temperature on the self-heating behaviour of the dry coal dust sample has been ...

Understanding the Magnetic Field Penetration in Mesoscopic Superconductors via COMSOL Multiphysics® Software

I. G. de Oliveira[1]
[1]Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil

Introduction: One of the main characteristic of the superconductors is its diamagnetic response of applied magnetic fields. The superconductors refuse the penetration of magnetic field into its interior, it is the well know Meissner effect, B=0 into the superconductor sample. However when the applied field reach a determined value, the magnetic field can enter. There are two different ways of ...

Improving the Sensoring of PEM Fuel Cell by Numerical Techniques

S. Skoda[1], E. Robalinho[2], E. F. Cunha[1], M. Linardi[1]
[1]Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP, São Paulo, SP, Brazil
[2]Universidade Nove de Julho - UNINOVE, São Paulo, SP, Brazil

The use of numerical techniques in PEM fuel cell sensoring represents an advantage of project engineering, reducing the costs and accelerating the manufacturing of prototypes. In this work some numerical responses are shown, relating to numerical sensoring of water and oxygen mole fractions at cathode of a 5 cm² of geometric area PEM fuel cell. The need to recognize a geometric figure of merit ...

Estudo Numérico da Eletroquimioterapia em Tumor Cutâneo com Diferentes Configurações de Eletrodos

G. Neves[1], D. Suzuki[1], J. Alvim[1], M. Rangel[2]
[1]Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
[2]Vet Câncer Oncologia Veterinária, São Paulo, SP, Brasil

A eletroquimioterapia é um tratamento de câncer que utiliza a combinação de agentes quimioterápicos e campos elétricos. A base teórica por trás dessa aplicação é a eletroporação. Esse fenômeno biológico consiste na abertura de poros na membrana celular devido à aplicação de pulsos elétricos. Este trabalho analisa o comportamento do campo elétrico gerado por pulsos ...

An Overview of Impellers, Velocity Profile and Reactor Design - new

P. Patel[1], P. Vaidya[1], G. Singh[2]
[1]Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]Indian Oil Corporation Limited, Faridabad, Haryana, India

This paper presents a simulation approach to develop a model for understanding the mixing phenomenon in a stirred vessel. The mixing in the vessel is important for effective chemical reaction, heat transfer, mass transfer and phase homogeneity. In some cases, it is very difficult to obtain experimental information and it takes a long time to collect the data. Such problems can be solved using ...

Quick Search

2701 - 2710 of 3646 First | < Previous | Next > | Last