每页:
搜索

结构 & 声学 博客文章

使用 COMSOL Multiphysics® 模拟磁致伸缩效应

2013年 8月 26日

如果你曾经站在变压器旁边,可能听到过它发出的嗡嗡声,并怀疑附近是不是有蜜蜂。下次再听到这种声音时,你大可以放心,这不是蜜蜂,而是变压器铁芯的磁致伸缩发出嗡嗡声。 什么是磁致伸缩? 磁致伸缩是一种效应,它会使所有暴露在磁场中的磁性材料的形状发生变化。例如,磁致伸缩效应会使一块铁伸长 0.002%,使镍收缩 0.007%。这一现象曾经因为被用在第一次世界大战期间的声呐设计中而引起了广泛关注。进一步的研究,最终研制出了用于工程的磁致伸缩材料,例如 Terfenol-D,以及最近研制出的 Galfenol,它的伸长率高达 0.04% ~ 0.2%。 磁场引起的应变现象也称为正(磁致伸缩)效应。磁致伸缩效应可以追溯到原子级的相互作用,它是磁性材料中的磁能和机械能在受到磁场和机械应力时所发挥的平衡作用而产生的。下面的动画是对磁致伸缩材料内部情况的简单说明。 当对材料施加交变的磁场时,构成材料的微小椭圆体磁铁会随着磁场大小和方向的变化来回翻转。这些微小磁性体方向的改变表现为一种宏观应变。如果以典型的电力线频率(50Hz – 60Hz)交变磁场,材料中的交变应变会使它像扬声器一样工作,从而产生可以听见的声音。这就解释了变压器发出的嗡嗡声之谜。 这种双向磁机械耦合也会产生逆 效应,即作用在磁性材料上的应力可以通过调整这些微小磁体的方向来改变材料本身的磁性状态。正效应和逆向效应分别用于驱动类和传感类应用。 磁致伸缩材料的应用 从航空航天、石油生产到声学和 MEMS,磁致伸缩材料几乎可以应用在所有行业。下面列出了一些重要的商业应用: 声学设备 声呐 水听器 用于清洗、混合和乳化的超声波振动器 超声波摩擦焊接 驱动器 直线电机和旋转电机 尺蠖式驱动器 用于机床头部的位置控制器 燃油喷射系统 光学扫描系统 液压驱动器,例如伺服阀和泵 用于减小阻力的智能机翼中的主动后缘 传感器 位置传感器 非接触式扭矩传感器 磁场传感器 MEMS生物和化学传感器 振动控制 减振器 平台稳定器 图像稳定器 能量收集器 混合智能结构 带混合压电/磁致伸缩磁芯的 Tonpilz 换能器 混合压电/磁致伸缩复合驱动器和传感器 您还可以利用磁致伸缩效应把家里客厅的墙壁或窗户变成扬声器! 那么,如何在 COMSOL Multiphysics 中对这种有趣的现象进行建模呢? 在 COMSOL Multiphysics 中对磁致伸缩进行建模 对磁致伸缩型换能器进行建模的正确方法包括准确模拟磁和结构性能,并使用适当的材料模型模拟这些物理场之间的相互作用。COMSOL 中内置了预定义的物理场接口,可用于设置磁仿真和结构仿真。COMSOL 还支持灵活地设置用户自定义的本构关系,用数学的方式表示材料模型。 实验表明,正向和逆向磁致伸缩效应都是非线性的。当模拟那些在准静态条件下运行,但暴露在大范围机械力和磁场中设备时,建立完整的非线性响应模型可能很重要。在这类设备中,了解磁致伸缩磁芯在什么工作条件下饱和是有用的。这些信息可以为设计人员提供极限值,还可以解释实际的非线性行为,例如传感器灵敏度的变化或用户期望从磁致伸缩设备获得的驱动器最大力。 在某些已知频率和已知工作条件下工作的声学换能器中,可以使用线性本构定律简化材料模型。这些定律(或方程)是在假设换能器操作涉及围绕偏置点的小幅振荡的条件下推导的。而如果在建模方法中考虑这些实际因素,那么我们就能够轻松模拟磁致伸缩换能器在较宽工作频率范围内的响应。 在 COMSOL Multiphysics 中,可以同时设置非线性和线性本构方程模拟磁致伸缩器件。接下来,我想与大家分享一些我们对一个实验换能器进行模拟的结果。 模拟磁致伸缩换能器 典型的换能器有一个被驱动线圈包围的磁致伸缩磁芯。流过线圈的电流会产生磁场。传感器有一个钢制外壳,包围着驱动线圈和铁芯。磁芯连接到活塞上,活塞用于在启动器配置中将磁芯的位移传递到外部机械部件上,或在传感器配置中将负载从外部机械或声源传递到磁芯上。钢制外壳、活塞和铁芯形成了一个封闭的磁通路径。 对于非线性模型,我们使用了 Galfenol的典型材料表征曲线,并确定了重要设计参数的非线性,例如换能器的阻力。我们还能够探索驱动和传感行为的变化与各种磁场和作用在传感器上的拉伸和压缩载荷的函数关系。有关这个模型的更多信息,请查看 COMSOL 案例库中的非线性磁致伸缩换能器和传感器 教程案例。 非线性磁致伸缩换能器仿真中的位移幅度、驱动器和传感器曲线以及换能器阻力图。 对于线性模型,我们使用了 Terfenol-D 的典型材料参数,并生成了驱动器载荷线。我们还研究了换能器位移的幅度和相位,以及驱动线圈阻抗的频率响应。 线性磁致伸缩传感器仿真中的驱动器载荷线、线圈阻抗、位移幅度和位移相位图。 2013 年 COMSOL […]

模拟冷冻干燥工艺

2013年 8月 1日

提起冷冻干燥工艺,我就会想起小时候吃过的像冻干冰淇淋一样的太空食品。对于保存太空食物而言,冷冻干燥工艺很重要,但它也可以用于其很多应用。

使用临界面法预测疲劳

2013年 7月 22日

对疲劳的研究始于 19 世纪,起因是铁路车轴发生故障从而导致了火车事故。在旋转轴中,应力的变化是从拉伸到压缩,再回到拉伸,由于应力状态是单轴和成比例的,因此载荷历程很简单。

使用 COMSOL 模拟离心调速器

2013年 7月 5日

无论是小时候坐旋转木马,还是搅拌一桶水并观察水与桶内壁“拥抱”的过程,或是观看泥浆从转动的轮胎上滚落下来,我们可能都见过离心力以这样或那样的方式在发挥作用。

使用弹性薄层边界条件进行结构分析

2013年 4月 3日

一些结构类应用包含夹在较低纵横比结构之间的薄层或高纵横比结构。例如,如果在一个机械系统的表面黏合一个压电换能器,那么相较于黏合在一起的两个结构,黏合剂层的厚度非常小。

石墨烯革命:第二部分

2013年 3月 27日

我在之前的一篇博客中曾经介绍过石墨烯的一些奇异特性。石墨烯仅包含单层原子,这意味着任何石墨烯基结构都将有极高的纵横比;而高纵横比的几何也为模拟带来了各种挑战。 石墨烯的传热模拟 COMSOL 提供了多种工具来帮助模拟具有极高纵横比的几何及特征。最近,人们利用 COMSOL 对石墨烯“被子”进行了传热模拟,《Nature Communications》杂志的”用于高功率 GaN 晶体管热管理的石墨烯被子“一文介绍了该研究。论文作者使用 COMSOL Multiphysics 证实,可通过引入由薄层石墨烯 (FLG) 制作的额外散热通道,即顶面导热片,来显著提升 AlGaN/GaN 异质结场效应晶体管 (HFET) 的局部热管理。 COMSOL Multiphysics 的传热接口支持您使用薄层特征特征模拟极高纵横比的组件。这一特征仅求解表面切面处的传热方程,因此免去了在高纵横比层中使用极端细化网络的需求。使用此方法能够极大减少计算时间和内存使用。 薄层特征设定窗口。 石墨烯的电气模拟 从 2006 年开始,人们就已经使用 COMSOL 来研究石墨烯的电气特征。在这篇论文中,研究人员使用 COMSOL 来推导石墨烯基复合材料的面内和横向电导率。我们可以很轻松地在 COMSOL Multiphysics 中输入电导率的张量物理量。您仅需提供电导率张量元,它可以是温度或其他任何量的函数。 可以轻松在电流接口电流守恒特征的设定窗口中指定各向异性电导率。 石墨烯的结构力学模拟 COMSOL 也可以模拟石墨烯的结构力学应用。在这篇论文中,研究人员计算了石墨烯膜在压力差作用下产生的挠度和应变。可通过电气检测到带结构中的变化,这说明它可用于制造超灵敏压力传感器。结构力学模块的壳接口主要用于薄壁结构中的结构力学分析,因此非常适合此类应用。壳接口使用 Mindlin-Reissner 类公式,即考虑了横向剪切形变。这意味着我们无须对极薄结构进行网格剖分,就可以获得高精度的结果。 壳接口中材料模型的设定窗口。 相关示例模型 我们现在已经分析了热学、电气以及力学的模拟概念,您可能在想有什么模型能同时用到所有这些概念。确实有一个,您可以查看案例库中电路板加热模型,如下所示。 电路板加热模型演示了热学、电气以及力学模拟概念。 这一多物理场示例模拟了加热电路器件时电热的产生、传热,以及机械应力和变形。模型用到了传热模块的固体传热接口,AC/DC 模块的电流,壳接口,以及结构力学模块的固体力学和壳接口。

模拟汽车制动盘的加热过程

2013年 2月 27日

汽车需要制动器(俗称刹车)的原因显而易见:你一定不希望制动器发生故障。造成制动器故障的原因有很多,其中一个就是制动盘过热。

模拟锂离子电池的散热

2013年 1月 21日

阅读全文,简要了解如何在 COMSOL Multiphysics® 软件中通过三个顺序研究来创建锂离子电池模型。在文章结尾,我们为您附上了教学模型的下载链接。


385–392 of 392
下一页
最后一页
浏览 COMSOL 博客