使用 COMSOL Multiphysics® 模拟多孔介质的声学特性
2021年 1月 14日
今天的特邀博主 Kirill Horoshenkov(FREng)是来自英国谢菲尔德大学(the University of Sheffield)的声学教授,他讨论了如何使用 COMSOL Multiphysics® 软件和声学模块模拟多孔介质的声学特性。 对于多孔介质的声学特性,我们感兴趣的方面是它对入射声波具有极强的吸收和修改能力,其中入射声波与填充材料孔隙的流体会发生相互作用。黏性摩擦、惯性和热耗散效应是产生刚性结构多孔介质声学特性的主要原因。这些效应受材料的孔隙率和其他孔隙结构参数影响。对于大多数实际工程问题而言,尽管我们并不直接关注多孔材料的声学特性,但研究声学特性、孔隙率和结构形态之间的关系却非常有意义。 在与能量存储相关的应用中,测量影响多孔隔板的电解质吸收及导电能力的陶瓷隔板的孔隙率和曲折率非常重要;在与过滤操作相关的应用中,定期测量与上述相似的特性可以确定在有流体流动的情况下膜的渗透性;在制药应用中,通常需要测量平均粒度和压实度,粒度分布以及颗粒混合物吸收的水分量。在化学和化学工程应用中,重要的是要了解材料的内部孔隙表面积,用于通过输送催化剂控制化学反应并将有毒物质转化为化学惰性键。在噪声控制应用中,我们关注的是评估多孔层吸收声音的能力。 6 参数 Johnson–Champoux–Allard–Lafarge 模型 COMSOL Multiphysics 软件包含一系列可以预测多孔介质声学特性的模型。在以往的应用中,声学模块的 多孔介质声学功能(图1)中所包含的 Johnson-Champoux-Allard-Lafarge(JCAL)模型一直用于此目的,其结果被广泛参考(截至 2020 年 11 月 15 日,已有超过 2000 个 Scopus 文摘和引文数据库引用)。 JCAL 模型最初于 1991 年被提出(参考文献1)。它需要 6 个非声学参数来预测材料孔隙中流体复杂的、随频率变化的动态密度: (1) \rho(\omega)=\frac{\rhof \alpha\infty}{\epsilonp} \left[ 1+\frac{\sigma \epsilonp}{i \alpha\infty \rhof \omega} \left( 1+\frac{4i \alpha ^{2}\infty \mu \rhof \omega}{\sigma^2 \Lambda^2 \epsilon^{2}{p}}\right)^{1/2} \right] 以及动态可压缩性 (2) C(\omega) = \frac{\epsilonp}{\gamma P0} \left[\gamma – \frac{\gamma-1}{1-\frac{i \sigma’ \epsilonp}{\rhof \alpha\infty N\textrm{Pr} \omega} \left(1+\frac{4i \alpha^{2}{\infty}\mu \rhof N\textrm{Pr}\omega}{(\sigma’ \Lambda’ \epsilon_p)^2}\right)^{1/2}} \right] 图1 多孔介质声学接口的设置窗口的屏幕截图,显示了 JCAL 模型的 […]