每页:
搜索

电磁学 博客文章

如何模拟沿波导的偏振旋转

2021年 4月 29日

对光子波导结构建模感兴趣? 了解一些适用于具有多种支持的波导模式和相同波导横截面的设备的有效技术。

通过多物理场仿真设计 5G 设备的腔体滤波器

2021年 4月 13日

从雷达和微波炉到粒子加速器,射频腔体滤波器可用于各种不同的应用领域。 其中:5G 设备和基础设施。

如何使用 COMSOL Multiphysics® 模拟霍尔效应传感器

2021年 3月 11日

霍尔效应传感器的基本工作原理:附近的磁场使通过半导体传感器的电流路径发生偏转,从而导致电位发生可测量的变化。

一场“安静”的革命:通过仿真分析电动机噪声

2021年 3月 2日

一个多世纪以来,世界在电动机的帮助下不停地运转。当人类社会享受到从电风扇到汽车等由电动机带来的各种好处时,人们可能就会要求这些机器变得更加安静。电动机发出的声音是一种多物理场现象,因为电动机的电磁运作会通过机器和周围的空气传送振动。

使用 COMSOL® 分析电动机和发电机设计

2021年 2月 16日

使用电磁学仿真,您可以研究和优化永磁电机或发电机中的磁场分布、机械扭矩以及铁的使用和损耗。

计算三相电力变压器中的损耗

2021年 2月 4日

三相电力变压器被广泛应用于世界各地的电网中进行高效电力传输。就电容、负载平衡和效率而言,三相电力变压器比单相变压器具有明显的优势,但对其损耗的计算却并不像单相变压器一样简单。使用 COMSOL Multiphysics® 软件,我们可以正确地计算铁芯、线圈和支撑结构的损耗,以及重要的集总参数(例如初级和次级电感)。

模拟均匀磁场中的硅量子点

2021年 1月 26日

从 COMSOL Multiphysics® 软件 5.6 版本开始,半导体模块的薛定谔方程 物理场接口新增了处理多分量波函数的功能。在使用 COMSOL 对半导体器件材料的能带结构进行仿真的博客文章中,我们讨论了如何使用此接口功能处理多分量波函数。本篇博文,我们将以均匀磁场中的硅量子点模型为例,继续探索这项新功能。 量子点简介 量子点是纳米技术中必不可少的组成部分,在太阳能电池、发光二极管(LEDs)、显示器,光电探测器和量子计算中都具有潜在应用前景。Jock 等人最近发表了一篇与自旋轨道量子位的应用领域相关的论文(参考文献1)。他们在该文的补充说明1 中,提供了描述均匀磁场中硅量子点的公式,并在补充图1中显示了数值解。今天,我们将通过仿真的方法来重现该数值解。 硅量子点的薛定谔方程 在参考文献1 的补充说明中,方程1 给出了均匀磁场 \mathbf{B} 中硅量子点的单电子哈密顿量,不包括自旋轨道耦合: (1) H=\frac{Px^2}{2 m\perp} +\frac{Py^2}{2 m\perp}+\frac{Pz^2}{2 m\parallel}+V(\mathbf{r})+\muB \mathbf{B} \cdot \sigma 其中,m\perp和 m\parallel 是分别在横向和垂直方向上的有效质量;V 是量子点的约束势能;\muB 是玻尔磁子;\mathbf{\sigma} 是 Pauli 矩阵的向量;根据该论文所述,假定旋磁比张量是值为 2 的标量;动量 \mathbf{P} 由下式给出: (2) \mathbf{P}=i \hbar \nabla + e \mathbf{A}(\mathbf{r}) 式中,e 是基本电荷,\mathbf{A} 是给定的磁矢势 \mathbf{A}(\mathbf{r})=\frac{1}{2}\mathbf{B}\times\mathbf{r},并且虚数单元 i 前面没有减号,因为 COMSOL Multiphysics 中的所有物理场接口都采用工程符号 exp(-i k x + i \omega t) 而不是 exp(i k x – i \omega t)。 约束势能 V(\mathbf{r}) 项由论文中的等式9 给出: (3) V(\mathbf{r})=\frac{1}{2} m\perp \omegax^2 x^2 […]

如何使用 COMSOL Multiphysics® 分析真空系统中的稀薄气体

2021年 1月 12日

涡轮分子泵是一种能够达到超高真空(UHV)条件的机械真空泵。由于气体分子之间相互碰撞概率较低,所以需要专用的数值方法模拟超低压条件下的气流。COMSOL Multiphysics® 软件提供了两种完全不同的计算方法用于模拟高度稀薄气体:角系数方法(angular coefficient method)和蒙特卡罗方法(Monte Carlo method)。在这篇博客文章中,我们介绍了如何使用蒙特卡罗方法对涡轮分子泵进行模拟。 编者注:此文最初发布于 2017 年 8 月 9 日。现已更新以反映软件的最新功能。 真空系统简介 在许多高科技工业应用(例如半导体芯片的制造)中,我们都能发现真空技术。真空环境在基础研究中也是必不可少的。例如,粒子加速器无法在正常大气压下工作,因为被加速的粒子大概率会与周围的空气分子发生碰撞。 典型的真空腔室。 在真空环境中,气体的绝对压力远低于典型的海平面大气压,后者约为 101,325 帕斯卡(Pa)或 14.7 磅每平方英寸(psi)。大气主要由氮气和氧气组成,但是在处理真空室时,必须考虑包含的每种气体,甚至腔室壁及配件的排出气体,润滑剂(升华和蒸发气体)也会对真空室压力产生重大影响。 真空泵 用于抽除真空室中的气体,从而降低真空室内压力。真空泵有许多不同的类型,包括: 旋片泵 定片泵 扩散泵 涡轮分子泵 低温泵 离子泵 通过串联的方式使用两种或多种不同类型的泵非常普遍,每种泵都有其适合的特定压力范围。例如,旋片泵或定片泵可以在大气压下排出空气,同时将真空室的压力降低到小于 0.1Pa 左右。涡轮分子泵可以达到超高真空条件(小于 10-7 Pa),但在大气压下却无法正常工作。为了将压力从大气压一直降低到超高真空,我们首先可以使用旋片泵(以这种方式使用时被称为粗抽泵)将压力降至 0.1 Pa,然后使用涡轮分子泵将压力从 0.1Pa 降低至 10-7 Pa。 涡轮分子泵。 但要注意的是,在实际工作中真空泵并不能达到理想的真空度。在大气压和室温下,1 立方米的空气中有超过 1025 个分子。即使在超高真空中,1 立方米的空气中仍包含数万亿个分子!我们抽真空目的不是要排除所有的空气分子,而是要尽量排除足够多的空气分子,以免它们阻碍腔室内的实验或制造过程。 真空系统中的稀薄气流 涡轮分子泵只有在通过其的气流是自由分子流时 才能工作。换句话说,气体压力必须足够低,以使分子撞击周围表面的频率比分子间的碰撞的频率更加频繁。因此,该泵仅在使用粗抽泵将压力降低到约 0.1Pa 之后才能实现超真空条件。 通常,在考虑气流时,我们会将气流设想为连续流。当空气通过狭窄的通道流入房间时,这股空气会散开,并可能在所有侧面形成再循环区域。当流动的空气到达障碍物时,我们期望它能绕开障碍物流动,填充其后面的空间。由于空气中的氮、氧和其他气体分子每秒会相互碰撞数十亿次,因此它会以这种方式运动。 在极低的气压下,气体表现为自由分子流,气体流动主要由分子-壁碰撞而不是分子-分子碰撞控制。如果气体从狭窄的孔口释放到大的开放空间中,那么大多数分子将不会因分子间碰撞而向四面八方扩散,而是会沿几乎同一个方向飞出,这种现象被称为分子束射。 当气体分子撞击表面时,它们可能会被表面吸附或反射离开表面。即使表面肉眼上看起来非常光滑,分子也会在表面在随机方向上反射分子。一个合理的近似是给以不同反射角的概率分布。通常,此概率分布函数在垂直于表面的方向上对称。 通过窄管进入腔室的连续流(左)和分子流(右)的比较。 涡轮分子泵详解 设想一下,如果用平板或球拍击打球,那么在球与球拍接触时会朝不同的方向弹跳,具体取决于球拍的角度。这就是涡轮分子泵的基本工作原理。 涡轮分子泵由许多环组成,这些环相互堆叠,并沿一条公共轴线排列。其中一些环绕轴旋转,称为转子,其他的环被固定在一个固定的位置上,称为定子。一个典型的设计可能包含多对交替的转子和定子。每个环内有许多狭窄的倾斜叶片。通常,环中的每个叶片以相同的角度倾斜并且等距分布。因此,如果有 N 个叶片,那么环具有 N 倍轴向对称性。 由于叶片在转子中倾斜,当分子撞击叶片时,它更有可能沿一个方向从转子弹回,而不是朝相反方向弹出。下面的图示即显示了一个没有相邻定子的单个转子中的这种运动行为。假设此叶片环逆时针旋转,如红色箭头所示。一个分子更有可能击中这些叶片之一的底面而不是顶面。这些分子更可能向下偏转(沿蓝色箭头的方向)而不是反向弹出。分子这种向下方向的优先偏转,可以减小在该转子上方区域中的气压。 为了使传输概率的差异(从上到下与从下到上)更大,叶片表面的移动速度应等于或大于分子的平均热速度。对于室温下的大多数气体,该速度约为每秒几百米,但是对于非常轻的气体(如氢气),速度明显更高。因此,当使用涡轮分子泵将腔室压力降低至超真空时,腔室中的大多数残留气体将为氢气(参考文献1)。 涡轮分子泵的叶片由被称为级 的单元组成。典型的泵级可能包含8–20个这类在转子和定子之间交替的叶片环(参考文献2)。为简单起见,我们当前的模型仅考虑了单个转子。 通常,我们建立涡轮分子泵数值模型的主要目的是预测其泵速和压力比。这些参数可以通过分子在整个叶片环上的传输概率来预测,即从顶部进入级后从底部离开的分子比率,反之亦然。 选择数值方法 在 COMSOL® 软件中,有 2 种主要的数值方法可用于模拟极稀薄气流。一种称为角度系数法,可以通过分子流模块提供的自由分子流 物理场接口使用。角度系数方法是一种视图因子计算,可以计算模型边界处的分子通量,并假设气体分子只会与壁碰撞而不会与其他分子碰撞。角系数方法的主要缺点是它是准静态的,也就是说,它忽略了分子的有限飞行时间。在这里,这是一个重要的因素,因为与分子速度相比,叶片很容易达到每秒数百米的速度。 为了充分计算叶片在涡轮分子泵的运动,我们将选择使用粒子跟踪模块下的数学粒子追踪 接口执行蒙特卡罗方法进行模拟。在蒙特卡罗模型中,我们通过求解牛顿运动定律来解决气体中单个分子的运动。由于计算成本的限制,泵中单个分子的实际数量可能太大,因此无法单独对每个分子进行建模,但是我们可以采用一个有代表性的分子群样本(例如 100,000 个)进行建模,然后对整个分子群进行推算。 用蒙特卡罗法预测气体分子在简化的涡轮分子泵级中的传输概率,该级由单个旋转叶片环组成。正如我们前面所讨论的,包含N个叶片的典型泵转子通常会表现出N倍旋转对称性。因此,我们仅考虑通过两个相邻叶片之间的单个间隙的分子,便可以进一步简化模型并降低计算成本。 […]


浏览 COMSOL 博客