这篇博客,我们将探索电磁频谱的“最后的前沿”:太赫兹波段,以及探讨如何使用 COMSOL Multiphysics® 软件的附加产品半导体模块和 RF 模块,建立一个简单但功能强大的光导天线 (PCA) 模型。光导天线是太赫兹工程领域的一种常见元器件。
太赫兹波段简介
电磁波频谱的频率范围横跨大约 15 个数量级,几乎所有的电磁波段已被成功地应用到从远程通信到癌症治疗等各个领域。然而,由于太赫兹波的产生和检测存在技术困难,因此,频率范围大约在 0.1 THz 到 10 THz 之间,常被称作电磁频谱 “最后的前沿”太赫兹波段,一直未能实现大规模应用。直到最近,由于与太赫兹波产生和检测相关的技术创新在过去几十年里取得重大进展,太赫兹波段的商业应用似乎将要普及。事实上,6G 技术的运行频率可能就在太赫兹范围内。
图 1 太赫兹光谱位于微波和红外波谱范围内。
太赫兹波段的吸引力不仅仅在于通过更高的频率实现更大的带宽。许多材料,例如织物和纤维素等,对太赫兹辐射的吸收并不强烈,因此太赫兹成像技术能够“透视”衣物和包装材料的内部信息。另一方面,由于许多分子具有太赫兹能量的旋转和振动态,会强烈吸收太赫兹辐射,因此在正确的设置下,可以通过太赫兹图像获取准确的化学成分信息。此外,太赫兹波是非电离的,因此对人体安全无害。由于这些原因,太赫兹成像技术在安检类应用中成为 X 射线的理想替代品。
光导天线是许多太赫兹器件的基本组件,因此,本文将重点讨论光导天线模拟,即使用 COMSOL 附加产品半导体模块和RF模块建立一个光导天线模型,来预测太赫兹器件的发射光谱和指向性。尽管光导天线在太赫兹波的产生和检测中均有应用,但为了简化分析,我们将重点关注光导天线作为发射器的情况。本文采用的设置主要来自参考文献 1。
光导天线是如何工作的?
光导天线的工作原理相当简单。在由低导电性半导体(如低温砷化镓,LT-GaAs,由砷化镓在低温下结晶时产生,具有大量晶体缺陷)制成的基板上,在导电终端之间施加直流偏置电压,然后采用快速脉冲激光照射终端之间的间隙,就可以触发光电效应。当激光的光子能量大于半导体的带隙时,激光脉冲就会激发产生电子-空穴对,从而迅速提升材料的导电性。在终端之间流动的瞬态电流脉冲,即 光电流,将激发产生电磁辐射脉冲。如果激光脉冲持续时间处于飞秒量级,此脉冲的频谱通常会落在太赫兹波段。一旦激光脉冲结束,由于低温砷化镓材料内部高度缺陷,载流子会迅速重组,导致电流密度呈指数级衰减。光导天线的示意图如下图所示。
图 2 发射模式下的光导天线。
使用 COMSOL® 模拟光导天线
在这个模拟应用中,我们使用半导体模块中的 半导体 接口计算激光脉冲产生的瞬态电流密度,并通过RF模块中的 电磁波,瞬态 接口模拟太赫兹脉冲的产生。模型的设置如图 3 所示。为了最大程度的提高计算效率,我们使用了两个二维组件。在组件 1 中,首先求解 xz 平面上的电流密度,使电流主要在z 方向上流动。(该组件的坐标默认仍为 x 和 y,电流将沿 y 方向流动。)如下所述,组件 1 将被映射到组件 2)。然后,在组件2中模拟太赫兹波在 xy 平面上的传播,以使源电流密度能垂直施加在模型平面。
图3 光电导天线模型使用的几何结构。通过 半导体 接口(图中为 semi)求解 xz 平面(绿色)上的光电流,通过 电磁波,瞬态 接口(图中为 temw )在 xy 平面(红色)上模拟瞬态太赫兹脉冲。沿 xz 平面和 xy 平面的交叉线施加光电流密度,作为边界源电流密度。
半导体接口设置
首先,我们来详细了解如何利用组件 1 中的 半导体 接口模拟光导天线的载流子动力学。采用二维方法是指,我们假定激光脉冲在砷化镓衬底内衰减极快,因此无需解析 y 方向上的光电流,而且可以从模拟域中移除被终端覆盖的衬底部分。为便于缩放,将面外厚度设定为 1 µm。除了如图 3 中所示的设置两个金属触点外,还需要添加一个 光跃迁 节点,来模拟激光脉冲产生的电子-空穴对。我们选择了一个简单的高斯分布在空间和时间上描述电场振幅。光束半径设定为 5 µm,以匹配间隙大小;时间脉冲宽度(高斯函数的标准偏差)设定为 100 fs,并具有 0.5 ps 的延迟。最后,需要考虑低温砷化镓中大量晶体缺陷(即陷阱)集中所导致的快速重组过程。这可以通过添加 陷阱辅助复合 节点,指定载流子寿命来实现。材料属性来自参考文献 1。运行瞬态仿真 5 ps,以充分模拟重组过程的复合。
将半导体模拟获得的主要结果作为终端之间的瞬态光电流密度。为了将其作为边界源电流密度施加在沿组件 2 中的两个几何图形的交线位置,需要设置一个 线性拉伸算子。指定各自几何图形中恰当的终点和起点后,可以使用 _comp1.linext1()_ 算子将组件 1 中的任意变量映射到组件 2 中。
电磁波,瞬态接口设置
获得光电流之后,就可以使用组件 2 中的 电磁波,瞬态 接口模拟太赫兹脉冲。该组件的几何结构仅包括一个衬底的横截面切面(假设衬底的总厚度为 5 µm),周围是一个圆形空气域。由于源电流将沿平面外方向流动,为提高计算效率,可以只求解电场的面外分量。为了抑制非物理反射,我们在外部边界应用了 散射边界条件 特征。要获得远场频谱,需要添加一个 远场域 节点(需要同时运行 时域到频域FFT 研究步骤),并在模型外部边界进行远场计算,该节点仅应用于空气域。最后,使用 表面电流密度 节点,将组件1 映射的光电流用作电流源。为了确保在频域中获得足够的分辨率,在 10 ps 条件下运行这项研究,而不是半导体接口中使用的 5 ps 条件。
在研究设置中,首先需要运行瞬态研究来模拟太赫兹脉冲的传播。为了计算远场频谱,必须通过 时域到频域 FFT 研究步骤将时域数据转换为频域数据。
结果
先来看半导体计算的结果。图 4 的动画显示了在模拟的第一个 2.5 ps 内,由于激光脉冲、电场和电流密度产生的电子-空穴对产生率密度。此外,图 5 还显示了终端电流和总产生率的一维曲线图。可以看出,由于脉冲持续时间远小于载流子寿命,因此光电流的衰减速度比产生率更慢。
图 4 从左到右依次为:半导体模拟的第一个 2.5 ps 内的产生率、电场和电流密度。
图 5 终端电流和总产生率与时间的相关性。在 0.5 ps 时达到激光脉冲的峰值功率。
现在,我们来看看太赫兹脉冲。图 6 中的动画显示了脉冲是如何从光导天线传播的。源电流密度通过线图显式在衬底表面(下边界)。图 7 绘制了两个不同点的脉冲波形。从这些图中可以看到,衬底的反射如何在初始波前之后产生额外的波纹。
图 6 衬底下边界上的源电流密度及其产生的出射太赫兹脉冲。圆的半径为 250 µm。
图 7 距离光导天线 100 µm 和 250 µm 处的电场(Ez)。
最后,结合 远场计算 节点与 时域到频域 FFT 研究,绘制出光导天线的远场频谱图。我们发现,在大约 0.75 THz 处,脉冲达到最强峰值,且一直到接近 5 THz 处都有明显的功率。此外,在比较正向(y 方向)和侧向(x 方向)的远场光谱时,我们看到由于衬底的原因,有轻微的指向性。
图 8 运行 时域到频域 FFT 研究获得的太赫兹脉冲远场频谱。在比较 y 方向和 x 方向的频谱时,发现由于衬底的存在而产生轻微的指向性。
我们应该注意到,这种简单的光导天线模拟方法有一定的局限性:
- 我们假设 GaAs 衬底内的激光强度衰减得足够快,可以进行二维处理,因此无法求解 z 方向上的光电流密度。
- 我们只模拟了终端之间平面上的太赫兹脉冲,因此忽略了金属终端对脉冲频谱和指向性的影响。这也意味着没有根据计算出的太赫兹带宽对天线形状进行优化。
- 我们模拟了只包括一个薄衬底的简单模型,不足以提供强大的指向性。更接近真实应用的模型应该包括更厚的衬底域和/或硅超半球透镜,来引导太赫兹光束。
在太赫兹脉冲模拟中,可以考虑建立天线几何结构的全三维模型来克服这些局限性。
结语
在这篇博客中,我们通过建立一个具有实际预测能力的简单模型,探讨了如何利用半导体模块和 RF 模块,基于第一性原理模拟太赫兹设备。文中介绍的模型模拟了光导天线太赫兹发射的频谱和指向性。您可以点击下面的按钮下载光导天线模型,尝试自己动手模拟!
参考文献
- J. Zhang et al., “Numerical analysis of terahertz generation characteristics of photoconductive antenna,” 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 1746–1747, 2014; https://ieeexplore.ieee.org/document/6905199.
扩展学习
- 了解有关太赫兹模拟的更多信息,请查看太赫兹超材料仿真网络研讨会相关视频:
评论 (0)