每页:
搜索

最新内容

从测量中获取结构力学的材料数据

2015年 2月 23日

我们经常碰到这类问题:“能否直接在 COMSOL Multiphysics 中输入测量得到的应力-应变曲线。”在这个新的博客系列中,我们将详细介绍如何处理及解读从测试中获取的材料数据;还将解释为什么简单输入应力-应变曲线的做法并不可取。

使用云计算运行 COMSOL Multiphysics®

2015年 2月 20日

我们以前写过一篇有关 HPC 与 COMSOL Multiphysics® 软件、集群、以及混合计算的博客。但并非所有人的办公室中都有集群可用,或者有可用于构建 Beowulf 集群的硬件,如果我们确实需要集群所能提供的额外计算资源,有哪些可用的选择呢?其中一个解决方案便是云计算,这是一项提供临时性计算能力的服务,可以帮助提升计算能力及生产力。

使用事件接口模拟温控器

2015年 2月 19日

温控器 装置的作用是感测系统温度,并基于温度信息控制系统中的加热器和冷却器,使系统温度始终接近期设定值。温控器种类众多,我们今天只重点介绍一种利用两个设定点自动打开或停止加热器的温控器。这种温控器被称为开关式 控制器或继电式 控制器,我们可以使用 COMSOL Multiphysics 的事件 接口对其进行模拟。

空间圆弧框架的不稳定性评估

2015年 2月 18日

从法国卢浮宫到瑞典球形体育馆,许多现代建筑都将空间框架作为建筑的基础。设计空间框架时,我们需要评估其中的不稳定性风险。

对周期性热负荷进行建模

2015年 2月 16日

我们经常收到关于周期性或脉冲性热负荷的建模问题。也就是一个热负荷在已知时间内反复启用和停用的情况。使用COMSOL Multiphysics 中的事件 接口,我们可以轻松、准确并且高效地对这种情况进行建模。这篇文章,我们将为您介绍这种建模技术,它适用于多种类型的瞬态仿真,在这些仿真中,负荷的变化发生在已知时间内。 编者注:这篇博客于 2022 年 10 月 4 日更新,以反映更新后的建模功能。 瞬态仿真简介 首先,我们先从概念上来简单了解一下在 COMSOL Multiphysics 中求解瞬态问题时使用的隐式时间步进算法。这些算法根据用户指定的容差来选择时步。虽然这允许软件在求解中出现渐变时采取非常大的时间步进,但缺点是使用太宽的容差会跳过某些瞬态事件。 为了理解这一点,我们以一个普通微分方程为例来说明: \frac{\partial u}{\partial t} = -u + f(t) 其中,强制函数 f(t) 是一个从 ts 开始,在 te 结束的矩形单位脉冲。给定初始条件 u0=1,我们可以用解析法或数值法在任意时间长度上求解这个问题。 如上图所示,在解析解的图中,当激励函数为零或一时,我们可以观察到解呈指数下降和上升。为了求解这个问题,我们使用默认的瞬态求解器,来看看两个不同相对容差的数值解: 相对容差为 0.2 和 0.01 时的数值解(红点),并与解析结果(灰线)进行了比较。 从上面的图中我们可以看到,非常宽松的相对容差 0.2 并不能准确描述负荷的变化。当设置比较严格的相对容差 0.01 时,得到了合理的解。我们还可以观察到,点的间距显示了求解器所使用的不同时间步进。很明显,在解变化缓慢的情况下,求解器采用了较大的时间步进,而在启用和停用热负荷时采用了较小的时间步进。 然而,如果容差设置得太宽松,当热负荷的宽度变得非常小时,求解器可能会完全跳过热负荷的变化。也就是说,如果 ts 和 te 移动到相互非常接近时,对于指定的容差来说总热负荷太小。当然,我们可以通过使用更严格的容差来缓解这种情况,但还有一个更好的选择。 我们可以通过使用显式事件 来避免收紧容差,显式事件 是一种让求解器知道它应该在一个指定的时间点评估解的方法。从这个时间点向前,求解器将继续像以前一样,直到达到下一个事件。让我们看看上述问题的数值解决方案,在 ts 和 t_e 时间段内采用显式时间,以 0.2 的相对容差进行求解,这是一个非常宽松的容差: 使用 显式事件时的数值解,即使采用非常宽松的相对容差 0.2,与解析结果相比也相当吻合。在远离事件的位置,要采取大的时间步进。 上图说明,每当启用或停用负荷时,显式事件 功能就会产生一个时间步进。宽松的相对容差允许求解器在解逐渐变化时采取大的时间步进。在事件发生后立即采取小的时间步进,以使解的变化得到良好的求解。因此,我们既能很好地解决热负荷的启停问题,又能采取大的时间步进,使整体计算成本最小。 现在,我们已经介绍了相关的概念,接下来,我们来看看如何实现这些显式事件。 一个传热的例子 我们来看一个 COMSOL Multiphysics 案例库中的例子,并稍作修改以包括周期性热负荷和事件 接口。在硅晶片激光加热例子中,激光被建模为分布式热源,在旋转的硅晶片表面来回移动。 激光热源本身沿着中心线在晶圆上来回穿越,周期为 10s。为了尽量减少加热过程中晶圆上的温度变化,我们希望在热源位于晶圆中心的时候周期性地关闭激光。 为了建立这个模型,首先我们引入一个事件接口,并在其中定义一个离散状态 变量。这个变量的名字是 ONOFF,它的初始值是 1,如下面的截图所示。 事件接口中的 离散状态屏幕截图。 我们可以使用离散状态 变量来修改代表激光热源的施加热流,如下图所示。 使用 […]

等离子体的热力学平衡

2015年 2月 10日

您对使用 COMSOL® 软件模拟等离子体感兴趣吗?了解不同等离子体类型以及何时使用等离子体模块中的每个可用接口。

弱形式方程的离散化

2015年 2月 9日

本博客是弱公式化系列博客的后续部分。在之前的博客中,我们使用 COMSOL Multiphysics 软件设置并求解了一个典型的弱形式方程,并借助一些简单的物理参数验证了结果。今天我们将深入了解这些方程是如何被离散并数值求解的。

彩色玻璃背后的科学

2015年 2月 6日

虽然彩色玻璃的设计现在变得越来越绚丽,但它的制造技术自出现以来就基本没什么变化。本篇博客中,我们除了讨论这一艺术形式之美,还将研究隐藏在它制造背后的科学。


浏览 COMSOL 博客