每页:
搜索

电磁学 博客文章

使用薛定谔方程计算超晶格的带隙

2017年 5月 31日

在最新版本的 COMSOL® 软件中,您可以在半导体模块中使用新的薛定谔方程 接口进行建模。今天这篇博文,让我们来看一个简单的示例模型,这个模型使用了此接口来估计超晶格结构的电子和空穴基态能级。通过构建类似的模型,器件工程师能够计算给定周期结构的带隙并调整设计参数,直到达到所需的带隙值。 编者注:此博文于 2020 年 1 月 23 日更新,反映了软件最新的功能和信息。 超晶格结构的有效带隙 由于量子限制效应,超晶格结构的有效带隙比体阱材料中的有效带隙更宽——电子和空穴大多被限制在阱中,其基态能量从带边缘偏移。下面显示了一个示例,其中黑色和灰色线表示导带和价带边缘,蓝色和绿色曲线分别表示电子和空穴波函数被基态能量偏移。 超晶格带隙模型的汇总图。 COMSOL Multiphysics® 模型 这个模型简单明了,易于理解。使用了两个 薛定谔方程 接口:一个用于电子,另一个用于空穴。在每个接口下,两个 电子势能 节点用于设置方波形带边缘,同样,两个 有效质量  节点用于设置阱区和势垒区的有效质量。模型中只需要包含一个超晶格结构的晶胞,端点应用 周期性条件 边界条件。 COMSOL 模型开发器树结构。 在两个特征值研究中分别求解电子和空穴的基态能量。使用 数组 一维数据集将结果从一个晶胞扩展到三个晶胞 ,这也是 COMSOL Multiphysics® 软件的新增功能。 关于 薛定谔方程 接口 在物理场接口的设置面板中有一些参数值得注意。 薛定谔方程接口的设置面板。 特征值尺度 一个重要的参数是特征值尺度 λscale (单位: J)。这个参数用于特征值研究,将无单位的特征值相对于特征能量进行缩放。例如,默认值 1eV 允许特征值的数值以 eV 为单位呈现特征能量的值。因此,1.924 的特征值(如下面的屏幕截图所示)对应于 1.924eV 的特征能量。 特征值研究的设置。 如果将特征值比例设置为 1meV,那么相同的特征值将对应于 1.924 meV 的特征能量(来自不同模型的结果)。 能量 另一个参数是能量E(单位:J),用于稳态研究以指定稳态薛定谔方程的总能量。 薛定谔方程接口中的符号约定 时谐因子 在物理场接口中执行的单分量薛定谔方程如下: -\hbar^2 \nabla \cdot \left(\frac{\nabla \Psi(\mathbf {r},t)}{2\, m_{eff}(\mathbf{r})}\right) + V(\mathbf{r},t)\Psi(\mathbf{r},t) = -i \hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t) 请注意,方程右侧的能量算子采用了与大多数量子力学教科书采用的符号相反的约定。这是因为 COMSOL Multiphysics 对时谐解采用了exp(+iωt) 的工程惯例来约定 ,而不是 exp(–iωt) 的物理学约定。薛定谔方程 接口采用工程约定,因此 COMSOL® 系列产品中的符号约定保持一致。在这种不寻常的符号约定下,动量算子也获得了相反的符号——因为平面波现在是 exp(–ikx + iωt),而不是 exp(+ikx – […]

使用基准模型获取惯性聚焦分析的可靠结果

2017年 5月 24日

惯性聚焦涉及粒子在通道中的迁移。这个基准模型分析了粒子在惯性聚焦过程中的行为,其结果是有效的、可靠的。

感应电动机结构完整性的仿真分析

2017年 5月 11日

两位著名科学家尼古拉·特斯拉和伽利略·法拉利于 19 世纪分别独立发明了交流感应电动机。不管真相如何,您都可以使用仿真来计算感应电动机的结构完整性。

捕获永磁电机设计中的涡流损耗

2017年 5月 4日

得益于出色的能源效率,永磁(PM)电机在交通领域应用越来越普遍。您可以借助“AC/DC 模块”来研究永磁电机设计的涡流损耗。

模型教程:使用 COMSOL 模拟硅太阳能电池的性能

2017年 4月 27日

在分析半导体器件时,考虑影响其性能的多种物理因素非常重要。半导体模块是 COMSOL Multiphysics 软件的附加产品,可以帮助我们对这些复杂的器件进行建模。在本篇博客文章中,我们介绍了一个新的一维(1D)硅太阳能电池的教程模型,该模型在 COMSOL 软件内置的案例库中可以找到,也可以在 COMSOL 官网的“案例下载”页面下载。

太阳能级硅微波熔炉生产工艺的仿真与优化

2017年 4月 27日

对于要被视为“太阳能等级”的硅,它必须具有 99.9999% 的纯度。 因此,需要对用于生产太阳能级硅的微波炉进行优化来提高效率。

CO2 激光器平面放电建模的多级方法

2017年 4月 24日

由于大功率 CO2 激光器的复杂泵浦机制,我们在分析中需要考虑许多物质和碰撞,因此,对这些器件中的等离子体特性进行建模成了一项具有挑战性的任务,而等离子体特性是这些器件优化的关键因素。应用多级方法,一名研究人员使用 COMSOL Multiphysics® 软件创建了 CO2 激光器平面放电的全三维模型。结果显示了放电的均匀性,同时为优化激光器设计提供了进一步的潜力。

如何优化电磁线圈的间距

2017年 4月 20日

在设计电磁线圈时,我们可能想要调整线圈的位置,以便在特定的空间区域内获得所需的磁场强度。这可以使用 COMSOL Multiphysics® 软件附加的“AC/DC 模块”和“优化模块”产品,结合参数和形状优化来实现。接下来,让我们看看如何操作。 初始线圈设计和优化问题 假设我们的任务是设计一个线圈,使沿着部分中心线的磁场尽可能接近目标值。我们在之前的博客文章中介绍过,可以通过调整每匝线圈的电流来实现,但是,文中讨论的方法要在设计方案中为每匝线圈设计单独的电流控制。其实,我们可以对整个线圈使用单一的电流控制,并沿轴向调整线圈的间距来实现。 10 匝轴对称线圈。目标是改变中心线(绿色)处的磁场。 上图所示的线圈就是我们将要分析的案例。10 匝轴对称线圈由单个电流源驱动; 也就是说,流经每匝线圈的电流相同。最初的线圈设计将直径为 1cm 的线圈间隔为 S0 = 4cm 的距离。由于线圈是轴对称结构(我们仅对关于 z = 0 平面对称的解感兴趣),我们可以使用下图所示的简化计算域。 计算模型。我们想要改变五个线圈的位置和线圈电流。 我们的优化目标是通过改变五个线圈的线圈电流和 z 位置,使沿着一部分中心线的 Bz 场尽可能接近期望值 B0。每个线圈可以移动的距离为 ,相邻线圈之间必须存在 G0 的间隙,因此第一个线圈的偏移量具有不同的下限。我们还需要对峰值电流进行约束,将电流限制在大于零的范围内。虽然从物理上讲,没有必要将电流限制在大于零的范围内,但这样做是一个很好的优化建模的技巧,因为这样可以保持受限的设计空间更小。 更正式地讲,这些陈述可以写成: \begin{aligned}& \underset{I, \Delta Z1, \ldots ,\Delta Z5}{\text{minimize:}}& & \frac{1}{L0} \int0^{L0} \left( \frac{Bz}{B0} -1 \right) ^2 d l \\end{aligned} \begin{aligned} & \text{subject to:}& & -(S0-G0)/2 \le \Delta Z1 \leq \Delta Z{max} \\end{aligned} \begin{aligned} & & & -\Delta Z{max} \leq \Delta Z2, \ldots ,\Delta Z5 \leq \Delta Z{max} \\end{aligned} \begin{aligned} & & & G0 \le (Z5-Z4) \\end{aligned} \begin{aligned} & & & […]


浏览 COMSOL 博客