计算流体力学 (CFD) 博客文章
通过模拟探索绿化对城市空气污染的影响
在许多人口密集的城市,空气污染逐渐成为严重影响人们健康的问题。如何减轻空气污染成为人们需要考虑的问题。其中一种方法是种植绿色植物。在使用此方法之前,必须制定有效的改善空气质量的策略,并确定最佳的实施方案。为此,研究人员使用 COMSOL Multiphysics® 软件创建了一个模型,以了解不同类型的绿色植物如何减轻城市的空气污染。 播种植物种子以改善城市峡谷的空气质量 你是否曾经走在城市街道上,感觉自已被周围的高楼大厦环绕,显得自己很渺小, 就好像走在一个人工建造的峡谷上一样。这种类型的环境有个名字:城市(或街道)峡谷。当街道两旁都被高高的建筑物包围时,就会形成一个类似于峡谷的环境,即城市峡谷。 城市峡谷的入口。图片由 Kanwar Sandhu 提供自己的作品。通过 Flickr Creative Commons 在 CC BY-SA 2.0 下获得许可。 在人口密集地区的城市峡谷中,空气污染是一个大问题。根据 世界卫生组织(WHO)的数据,在监测空气污染城市地区生活的人们,有80%以上地区的空气质量水平超过了 WHO 的限制。如此糟糕的空气质量可能导致城市居民面临各种健康问题。为了解决这个问题,需要制定以减少空气污染和恢复空气质量为重点的城市规划和设计策略。其中一种可能的方法是在城市峡谷中增加植被和绿化。 沿城市街道的树木。图片由 La Citta Vita 提供自己的作品。通过 Flickr Creative Commons 在 CC BY-SA 2.0下获得许可。 植被可以吸收和保留细微的尘埃颗粒和气体污染物,影响污染物的沉积和扩散,从而改善空气质量。在城市峡谷中增加绿化还有其他好处,比如改善建筑能效,减少城市的热岛效应以及管理雨水径流等。此外,绿色植被在美学上也可以让人感觉心情愉悦。 虽然最新的研究已经确定了通过种植绿色植被来改善空气质量,但在实施之前,还需要更多了解一些有效性和用途的信息。例如,植被的大小,形状和单个植物的特征(如叶片大小和孔隙率)都会影响其有效性。 基于此需求,热那亚大学( Genova University )和博洛尼亚大学( Bologna University)的研究人员进行了一项模拟研究,以了解绿色植物如何减少城市峡谷的空气污染。同时,他们还比较了不同类型的绿化和风速对城市空气质量的影响。下面,让我们来看看他们的工作成果。 模拟研究绿色植物对城市空气污染的影响 研究小组利用 COMSOL Multiphysics® 软件的CFD模块,模拟了一条 20米宽,100 米长的直路,其两侧被连续的建筑物包围,如下图所示。这些建筑物的高度均为 20 米,在下图以浅灰色显示。在他们的分析中,由于对称性,该团队只需要考虑几何模型的一半。 空气从入口(标记为1)流入模型,并沿道路的主轴线移动,然后从出口(标记为2)流出。为了帮助减少因绿色植物造成的污染,我们假设进入的空气是无污染的。 城市峡谷模型的几何形状。图片由 S.Lazzari,K.Perini,E.Rossi di Schio 和 E.Roccotiello 拍摄,摘自其 COMSOL用户年会2016慕尼黑论文。 为了进一步简化其模型,研究人员没有考虑汽车在城市峡谷内流动所造成的破坏。然而,这并不意味着汽车被完全忽略掉了。由于乘用车是道路污染的主要来源,该团队把这方面的研究重点集中于一种主要的汽车污染物:二氧化碳(CO 2)。该污染物在体积 V c(图上用红色表示)内均匀生成,并通过对流和扩散进行传输。该体积位于道路中间,宽度为5 米,高度为0.5 米。 绿色植物被模拟为被空气饱和并能够吸收污染物(稀物质)的达西多孔介质。通过改变孔隙率和渗透率以及还原反应的值,该团队可以根据所需的植物种类调整模型。这种灵活性使他们能够很容易地研究不同的植物种类和绿化形状。例如,在这项研究中,他们分析了两种不同的绿化形状: 厚度为 0.3 米的连续绿色立面 高 1.5 米、宽 1 米的连续树篱 除了这两个几何形状外,还使用了第三个几何图形 ——“透明”峡谷(有污染但没有植物)来进行比较。 显示连续绿色立面(左)和树篱(右)的几何形状截面图。S. Lazzari,K。Perini,E。Rossi di Schio和 E. Roccotiello 的图像,摘自其 COMSOL 用户年会 2016 慕尼黑论文。 分析绿化形状和入口处风速对空气污染物浓度的影响 利用该模型,研究小组比较了入口速度分别为 0.5 […]
利用多物理场仿真分析新型屋面瓦的设计
为了研究能够使房屋在炎热天气保持凉爽的新型屋面瓦设计,意大利Life HEROTILE Project 项目使用了多物理场仿真。
利用仿真技术阻止微流控装置中的气泡夹带现象
微流控设备会受到气泡的破坏。事实上,如果气泡夹带在微流控设备中,可能会导致设备发生故障。Veryst 工程公司创建了一个 CFD 模型来研究这个过程。
油脂浸洗鸡尾酒工艺在工业上的应用
近十年以来,油脂浸洗鸡尾酒逐渐成为一种流行风潮。调酒师使用这项技术可以制作各种各样的鸡尾酒饮料,例如 Benton 老式培根波旁威士忌(Benton’s Old-Fashioned, a bacon-infused bourbon cocktail)和温和山核桃黄油波旁威士忌
使用基准模型验证膨胀波结果的准确性
当超音速流围绕凸角转动时,会产生膨胀风扇。 您可以使用经过验证的基准在 COMSOL Multiphysics® 中分析这种现象。
设计可实现材料精确沉积的喷墨打印头
不管是 2D 或 3D 喷墨打印机,喷嘴设计都是保证装置实现精确材料沉积的重要前提,具有重要意义。
CFD 仿真中如何设定流体压力
众所周知,在 CFD 仿真中常涉及两种压力:绝对压力和相对压力。通过实验测量流体中压力的方法有许多种。在建立 CFD 模型时,正确地设定压力对定义边界条件和定义材料特性非常重要。 今天,我们将解释相对压力和绝对压力之间的区别,讨论 COMSOL Multiphysics® 软件为什么使用相对压力求解 CFD 问题,以及在模拟中什么时候使用不同定义的压力。 绝对压力和相对压力有什么区别? 在流体力学中,压力是指流体中单位面积表面上所承受的力。使用 COMSOL Multiphysics,我们可以通过求解流体流动的控制方程,纳维-斯托克斯方程,从而确定描述流动的速度和压力场。 CFD 问题中涉及的压力,通常主要有两种:绝对压力和相对压力。 绝对压力 绝对压力是指以绝对真空为基准直接测量的压力,即流体的真实压力。例如,如果我们使用气压计测量某一日的室外压力,会看到气压计的绝对读数大约为 1 个大气压或 101.325kPa,该值与海平面上的大气压相等。绝对压力为零代表真空。 使用气压计测量从 950mbar 到 1050mbar 的室外压力(1 mbar = 100 Pa)。图片来自 Langspeed,通过Wikimedia Commons在CC BY-SA 3.0下获得许可。 相对压力 相对压力是指相对于参考压力的流体压力。表压力是相对于环境压力测得的压力,即以环境压力为参考的相对压力。通常,相对压力用于表征封闭系统中的压力水平。我们可以使用压力表测量相对压力,以将内部压力与周围压力相关联。 压力表,在压力控制站测量相对压力。注意刻度盘如何从零开始,零刻度代表系统压力等于参考压力水平。图片由 Holmium 提供-自己的作品。通过Wikimedia Commons在CC BY-SA 3.0下获得许可。 绝对压力和相对压力的关系可表示如下: PA=p+pref 如果使用真空作为参考压力,则绝对压力和相对压力相等。大多数情况下,参考压力设置为大气压,通常是环境压力。 接下来,我们来看一下如何在 COMSOL Multiphysics 中描述这些压力定义。当我们计算一个流体流动问题的解时,COMSOL® 软件首先会求解速度分量(u,v,w)和相对压力(p)。在后文中,我们将解释,通过使用相对压力(而不是绝对压力)作为因变量,可以在建模中提高压力描述的准确性。然后,我们可以使用相对压力值作为模型的初始值和边界条件,下面,我们将举例说明。 在 COMSOL Multiphysics® 中表征流体压力 我们来看一个如何在 COMSOL Multiphysics 模型中恰当地将相对压力和绝对压力作为变量的示例。为了演示这些概念,我们使用一个简单的模型来说明。在模型中,空气以 1m/s 的入口速度流入通道并流出到绝对压力为 1 个大气压的环境中。除了我们假设两个对称的短入口段外,模型顶部和底部的边界均为无滑移通道壁。设置入口段是为了避免不一致的边界条件。(如果我们在防滑边界附近定义一个笔直的入口速度曲线,就会出现不一致的边界条件。) 有空气流通的通道示意图。 在此模型中,相对压力的变量名称为 p,绝对压力的变量名称为 spf.pA。在层流 接口的设置中,我们看到要求解的因变量是速度分量(u,v,w)和相对压力(p)。 因变量设置窗口。 在下图中,我们可以看到,参考压力水平默认设置为 1[atm]。该参考压力水平用于计算绝对压力:spf.pA = p + spf.pref。 我们还将可压缩性设置为弱可压缩流,这意味着空气的密度取决于温度和参考压力。要了解不同可压缩性设置的更多信息,请参阅上一篇博客文章。 可压缩性和参考压力设置。 现在,我们可以指定边界条件。在入口处,将法向速度设置为 1m/s。对于初始条件和出口边界条件,由于使用默认设置,因此需要输入相对压力。即,使用一个参考压力。当加上出口条件时,我们看到相对压力的默认值为 p=0,相当于绝对压力等于默认的参考压力为 […]
COMSOL Multiphysics® 自然对流仿真简介
自然对流现象存在于电子设备冷却、室内气候系统和环境运输等众多科学与工程应用中。在 COMSOL Multiphysics® 5.2a 版本中,CFD 和传热模块新增的一些功能使建立自然对流模型及其求解变得更加简单。在这篇博客,我们将概述自然对流现象和相关的新功能,并讨论在模拟自然对流时可能遇到的一些问题。