通用 博客文章
使用 COMSOL Multiphysics® 创建模型几何
创建模型几何是进行仿真的第一步。在 COMSOL Multiphysics® 软件中,有丰富的几何操作、功能和快捷工具帮助我们创建模型几何,其中包括生成几何体素,布尔、分割和变换操作,工作平面操作以及其他 CAD 工具。
借助模型方法自动完成物理场选择和研究
COMSOL Multiphysics® 支持创建和使用仿真,借助这项功能,我们能够自动完成建模操作,例如选择物理场和研究。
如何使用模型方法来加速 COMSOL® 工作流程
方法不仅可以加快使用“App 开发器”创建仿真 App 的流程。实际上,您可以创建模型方法来自动完成重复的建模操作,从而简化工作流程。
在 COMSOL 中求解模型后,如何使用作业序列保存数据
这篇操作方法博文面向希望在求解模型后自动执行常见任务的 COMSOL Multiphysics® 用户。 在此处了解如何使用作业序列。
如何生成随机非均匀材料数据
你知道有一种方法可以将具有由谱密度分布决定的指定统计属性的随机材料数据,用于生成和可视化结果吗?
如何使用模型方法创建随机几何对象
美味的奶酪和创建COMSOL Multiphysics® 模型有什么联系?在本文中,我们将以一块瑞士奶酪中的随机孔洞为例,演示如何利用方法来创建随机几何结构。
如何在 COMSOL Multiphysics® 中生成随机表面
获得在 COMSOL Multiphysics® 中生成随机表面(如粗糙表面和微结构)的全面背景和分步指南。
使用薛定谔方程计算超晶格的带隙
在最新版本的 COMSOL® 软件中,您可以在半导体模块中使用新的薛定谔方程 接口进行建模。今天这篇博文,让我们来看一个简单的示例模型,这个模型使用了此接口来估计超晶格结构的电子和空穴基态能级。通过构建类似的模型,器件工程师能够计算给定周期结构的带隙并调整设计参数,直到达到所需的带隙值。 编者注:此博文于 2020 年 1 月 23 日更新,反映了软件最新的功能和信息。 超晶格结构的有效带隙 由于量子限制效应,超晶格结构的有效带隙比体阱材料中的有效带隙更宽——电子和空穴大多被限制在阱中,其基态能量从带边缘偏移。下面显示了一个示例,其中黑色和灰色线表示导带和价带边缘,蓝色和绿色曲线分别表示电子和空穴波函数被基态能量偏移。 超晶格带隙模型的汇总图。 COMSOL Multiphysics® 模型 这个模型简单明了,易于理解。使用了两个 薛定谔方程 接口:一个用于电子,另一个用于空穴。在每个接口下,两个 电子势能 节点用于设置方波形带边缘,同样,两个 有效质量 节点用于设置阱区和势垒区的有效质量。模型中只需要包含一个超晶格结构的晶胞,端点应用 周期性条件 边界条件。 COMSOL 模型开发器树结构。 在两个特征值研究中分别求解电子和空穴的基态能量。使用 数组 一维数据集将结果从一个晶胞扩展到三个晶胞 ,这也是 COMSOL Multiphysics® 软件的新增功能。 关于 薛定谔方程 接口 在物理场接口的设置面板中有一些参数值得注意。 薛定谔方程接口的设置面板。 特征值尺度 一个重要的参数是特征值尺度 λscale (单位: J)。这个参数用于特征值研究,将无单位的特征值相对于特征能量进行缩放。例如,默认值 1eV 允许特征值的数值以 eV 为单位呈现特征能量的值。因此,1.924 的特征值(如下面的屏幕截图所示)对应于 1.924eV 的特征能量。 特征值研究的设置。 如果将特征值比例设置为 1meV,那么相同的特征值将对应于 1.924 meV 的特征能量(来自不同模型的结果)。 能量 另一个参数是能量E(单位:J),用于稳态研究以指定稳态薛定谔方程的总能量。 薛定谔方程接口中的符号约定 时谐因子 在物理场接口中执行的单分量薛定谔方程如下: -\hbar^2 \nabla \cdot \left(\frac{\nabla \Psi(\mathbf {r},t)}{2\, m_{eff}(\mathbf{r})}\right) + V(\mathbf{r},t)\Psi(\mathbf{r},t) = -i \hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t) 请注意,方程右侧的能量算子采用了与大多数量子力学教科书采用的符号相反的约定。这是因为 COMSOL Multiphysics 对时谐解采用了exp(+iωt) 的工程惯例来约定 ,而不是 exp(–iωt) 的物理学约定。薛定谔方程 接口采用工程约定,因此 COMSOL® 系列产品中的符号约定保持一致。在这种不寻常的符号约定下,动量算子也获得了相反的符号——因为平面波现在是 exp(–ikx + iωt),而不是 exp(+ikx – […]