结构 & 声学 博客文章
用于声学仿真的新阻抗边界条件
在开发一个新产品或新功能时,第一步通常是单独了解功能特性。要通过数学建模获得可靠和准确的预测,必须非常详细地指定关键组件、测试设置和边界条件。然而,大多数工程师更愿意关注关键组件,而不是 “不相关”的部分。COMSOL Multiphysics 声学模块中新增的阻抗边界条件可以帮助工程师更准确地指定边界条件。 什么是阻抗边界条件? 在回答上述问题之前,我们先来看看边界条件的定义。引入边界条件意味着 “我们知道在特定的边界上会发生什么”。边界条件会为域内正在求解的控制方程的动力学施加一个额外的约束。这个约束可以是一个已知的振动速度、一个硬声场壁或一个对称平面。施加了额外约束后,COMSOL Multiphysics 会寻找满足声学动力学 和 边界条件的解。 阻抗模型实际上是 “全流动”的模型,即同时对声压和声速施加一个条件,用于定义这两个因素之间的特定关系。在一些理想的情况下,这种关系是已知的。引入一个阻抗条件,本质上是形成一个特定的理想的声学行为。因此,阻抗边界条件 是一个很强大但简单的条件,适用于理想化动力学存在较明显的情况。例如我们熟知的麦克风腔的膜动力学,长管道中的声学,以及多孔表面的平面波声学,等等。 在数学上,阻抗边界条件指定了压力 p 和速度 v 之间的线性关系。 (1) p = Z\textrm{s} v 式中,Z\textrm{s} 是包含动力学的阻抗(SI 单位:Pas/m)。最高级的阻抗模型是在频域中给出的。因此,Z_\textrm{s} 通常是一个与频率有关的参数,Z_\textrm{s}=Z_\textrm{s}(\omega)。 与其指定一个 比阻抗 将速度与每一个点的压力联系起来(如等式(1)),不如使用声学阻抗 Z(SI 单位:Pas/m^3)将作用在一个表面的压力与该表面的体积流量 Q 相关联,即 (2) p = Z Q, \qquad Q = \intA v \ \mathrm{d} \mathbf{r} 最后,我们得到为行波定义的 特征比阻抗Z\textrm{c}。这类阻抗与波在域中移动时每一点的粒子速度和压力有关,这使它们成为对无限域有用的低阶模型。平面行波的关系,Z_\textrm{c}=\rho c 就是有一个典型的例子。 声学模块中的新阻抗模型 COMSOL Multiphysics 声学模块中的阻抗边界条件内置了几个直接可用于一系列声学应用的新模型。所有新增的模型都包含频率依赖性,并且只在频域中可用。(如果要在时域中定义一个阻抗边界条件,可以使用 用户定义的阻抗 边界条件)下表对这些模型进行了简单的描述,包括 压力声学 物理场接口的 阻抗 边界条件下的新增模型。 名称 描述 应用 RCL 集总参数电路元件模型,允许声阻(R)、声顺(C)和声惯(L)的任何组合。 电声: 用于移动设备和消费电子产品的麦克风膜、传感器等模型。 声-固相互作用:弹性材料和固体的机械行为的简单模型。 通用: 弹性材料和固体的机械行为的简单模型。 生理学 经过实验验证的人耳和皮肤的模型。 助听器: 人耳内使用的助听器的适当边界条件。 头部设备、移动设备、耳机: 费类设备的工作条件的理想声载荷。 人的皮肤: 人体是模拟域的一部分的模拟。 […]
在结构力学仿真中访问外部材料模型
您可能会希望能在结构力学仿真中指定由用户定义的材料模型。COMSOL Multiphysics® 5.2 版本支持您访问来自外部库的材料模型以及由您自己编程的材料函数。本篇博客中,我们将通过执行 Mazars 损伤模型来演示这一新功能。
主动噪声控制中的声传播路径仿真
今天,Lars Fromme 将以比勒费尔德应用科学大学 (FH Bielefeld University of Applied Sciences)教授的身份回归我们的博客。 现代世界中,在机器的噪声下工作已经发展成为一个职业安全问题。为了保证工人的安全,我们可以借助仿真来开发一些低成本的噪声控制方案。比勒费尔德应用科学大学的研究人员决定借助 COMSOL Multiphysics 仿真软件来模拟声传播路径,希望藉此实现噪声控制。
如何计算质量守恒和能量守恒
拟有没有想过如何计算流体流动仿真的质量守恒,或共轭传热模拟的能量平衡?如果是,请继续阅读 >>
声学轨迹角动量仿真
这篇博客介绍了声学轨迹角动量,并演示了如何模拟它。这是声泳力仿真系列博客的第 2 篇。
通过仿真分析动脉壁力学
从力学的角度研究动脉需要一个可靠的模型,用于完整描述这种生物软组织的各向异性非线性反应。
优化压电式能量采集器的能量
当涉及到压电能量采集器时,设计配置应最大限度地提高能量传输的效率。如何利用仿真来改进能量采集器的设计?
声辐射力的热黏性分析
了解声辐射力以及如何在 COMSOL Multiphysics 中对其进行全面热黏性分析。