每页:
搜索

结构力学 博客文章

在 COMSOL Multiphysics® 中模拟热机械疲劳

2021年 2月 18日

今天的客座博主是来自Lightness by Design公司的 Björn Fallqvist 博士,他在文中讨论了分析热机械疲劳的不同考虑因素和方法。 在这篇博客文章中,我们研究了 COMSOL Multiphysics® 软件中用于分析热机械疲劳的相关材料模型(模型使用了来自热机械疲劳测试的实验数据,以及参考文献中的材料参数)。随后,对在高温下运行的压力容器进行了分析,并使用非线性连续疲劳损伤模型评估疲劳寿命。 为什么要分析热机械疲劳? 在许多应用中,传统的等温疲劳分析是不够的,因为部件在高温下或在高温循环下工作时,材料性能与室温有很大不同。这种应用的典型例子是涡轮机和发电厂部件。 传统的疲劳分析,尤其是高周疲劳(high-cycle fatigue,HCF),不能直接考虑高温造成的影响。在高周疲劳区域中,载荷较低,蠕变等影响可以忽略不计。有时,S-N曲线会减小,以解决温度升高时疲劳强度降低的问题。然而,这没有考虑到温度和载荷同时循环时的影响,即所谓的热机械疲劳。这种温度变化的影响在低周疲劳(low-cycle fatigue,LCF)区域中尤为重要,在该区域,需要考虑多个方面,主要是弹塑性和蠕变的材料性能变化。 评估高温下疲劳性能的一种方法是使用样品在多个温度下的稳定(通常是寿命中期)应力-应变曲线,以获得应力或应变幅度,并确定控制非线性应力-应变曲线的硬化参数。理论上,人们可以用一组特定的外加载荷和温度组合进行实验,并尝试根据实验结果估算疲劳寿命。然而,热机械疲劳测试需要相对较长的时间,并且成本较高。评估高温下疲劳能力的一种更方便的方法是使用描述应力水平和失效循环关系的解析表达式,并根据温度对其进行修正。 热机械疲劳试验 在热机械疲劳试验中,试样通常同时承受循环应变和循环温度。这可以是同相(IP)或异相(OOP)。对于前者,最大拉伸载荷与最高温度同时出现,对于后者,最大拉伸载荷出现在最低温度时。 为了与本篇博文中的实验结果进行比较,我们参考了参考文献 1,其中研究了 P91(一种常见的电厂用钢) 的热机械疲劳。我们从参考文献 2 中获得了模型材料参数,获得了应力-应变曲线。值得注意的是,对于参考工作,使用统一的模型(即黏塑性应变由塑性和蠕变分量组成)。然而,这只会影响模型蠕变部分的值。 热机械疲劳分析的材料模型 作为温度的函数的材料模型参数(参考文献2)如下表所示: Temp [°C] E [MPa] k [MPa] Q [MPa] b [-] a1 [MPa] C1 [-] a2 [MPa] C2 [-] Z [MPa s1/n] n [-] 400 187,537.0 96 -55.0 0.45 150.0 2350.0 120.0 405.0 2000 2.25 500 181,321.6 90 -60.0 0.6 98.5 2191.6 104.7 460.7 1875 2.55 600 139,395.2 85 -75.4 1.0 52.0 2055.0 463.0 463.0 […]

圣诞老人在派送礼物过程中遇到挑战

2020年 12月 22日

今天的文章作者来自于我们规模最大、历史最悠久的客户。这家客户非常著名,总部位于北极圈内,大多数时候人们可能会忘记他们的存在,但他们一直在留意着我们。他们一直拥有完美的客户满意度,但今年由于特殊原因,他们对圣诞季的产品配送任务有些顾虑……接下来,让我们一起了解 COMSOL 与这个来自北极圈的特殊客户的故事吧! 一个非常特殊的技术支持问题 随着年末的来临,我们的精灵团队正在礼物工厂中努力工作,为所有的小朋友和大朋友们准备各种玩具和礼物。您也许会认为我们是一个非常传统的组织,实际上我们的产品一直在使用最先进的技术,例如,我们的生物发光研究成果可以帮助圣诞老人照亮夜行的道路。 多年以来,我们一直使用 COMSOL Multiphysics® 软件进行产品研发。最近,我们使用 COMSOL Multiphysics 5.6 最新版本中的新功能解决了一个技术难题。 几天前,圣诞老人的太太克劳斯夫人很急切地找到我。她告诉我,由于疫情原因,圣诞老人今年一整年都待家里社交隔离,一不留神就吃了太多的饼干,胖了一大圈。克劳斯夫人担心今年圣诞老人可能会因为太胖而无法钻进所有的烟囱,造成一些礼品无法派送。她很友善地为我们提供了圣诞老人近期的照片,以及其他详细参数。 一个典型的问题描述。 我们意识到,这个问题可能会导致我们的礼品派送工作发生严重的中断,需要立即采取行动。说实话,这对我们来说并不是一项常规任务,所以我们联系了 COMSOL 技术支持部门,并询问他们如何最好地解决这个问题。一向乐于助人的 COMSOL 技术工程师立即向我们提供了一些有用的资源,并助我们一臂之力。 模拟圣诞老人 我们可以使用 COMSOL 5.6 版本中结构力学模块的新功能——动态接触功能来分析这个问题,另外还可以通过这篇文章(如何利用一个附加组件将图像转换为几何模型)介绍的方法直接将圣诞老人的照片导入 COMSOL 软件中。同时,我们还可以通过虚拟实验快速获取材料属性。只要做好了这些准备,我们就可以创建一个模型来模拟在派送礼物过程中,圣诞老人通过烟囱的场景。 我们正在检查网格,来来回回检查了好几遍。 下面,让我们来看看模拟结果…   太好了,圣诞老人可以通过! 圣诞快乐! 看到仿真的结果,克劳斯夫人非常高兴,并感谢所有精灵们的努力工作——无论是在北极为大家精心制作礼物的精灵,还是在 COMSOL 技术支持团队中为用户提供帮助的精灵。 最后,COMSOL 祝大家圣诞快乐,平安健康,并祝 2021 年万事如意! 关于作者 Winter Frost 是圣诞老人工作室的高级精灵工程师,专门负责拐杖糖的产品派送和形状优化。

使用 COMSOL® 探索硬度数的不明确性

2020年 9月 22日

一位客座博主讨论了如何使用模拟应用程序和COMSOL编译器™来创建用于研究硬度值、压痕测试数据等的产品。

利用 Dzhanibekov 效应解释网球拍为什么会翻转?

2020年 9月 1日

译者注:本篇博文介绍了什么是“网球拍效应”,它是如何命名的以及为什么会发生这种现象。使用 COMSOL Multiphysics 的多体动力学模块,我们可以模拟该效应,并通过仿真 App 深入理解该效应背后的数学原理。

为什么自行车踏板能保持踩踏状态而不会松动?

2020年 8月 27日

当骑自行车时,为什么踏板不会松动并能保持踩踏状态?这是因为左踏板轴的螺纹是左旋的,而右踏板轴的螺纹是右旋的。轴承扭矩可以使踏板松开,而踏板仍能保持踩踏状态是因为受到一个更强的作用 —— 机械进动 效应影响。

使用仿真 App 设计与分析螺旋弹簧

2020年 8月 21日

压缩弹簧被广泛应用于各个行业,尽管它们的使用历史悠久,但其设计却极具挑战。为了使设计弹簧的任务更加简单,Veryst Engineering 公司使用 COMSOL Multiphysics® 软件中的 App 开发器开发了一个仿真 App。该仿真 App 基于严格的有限元分析能够提供一些必要的设计信息。

多物理场仿真助力抗击全球疫情

2020年 8月 13日

无创呼吸机(Noninvasive ventilation,NIV)是一种医疗救助装置,它通过持续气道正压通气技术(Continuous positive airway pressure,CPAP)为呼吸困难的患者提供空气。

使用多层材料技术模拟薄层中的传热

2020年 5月 15日

COMSOL Multiphysics® 软件功能全面,其中的多层材料技术可以计算薄层中的传热。如何以较小的成本获得精确的解是我们关心的问题。


第一页
上一页
1–8 of 130
浏览 COMSOL 博客