每页:
搜索

结构力学 博客文章

注意前方! 通过仿真分析高尔夫球的性能

2021年 8月 25日

译者注:How it’s made (中译名:《制造的原理》/《造物小百科》)是美国探索频道的科普纪录片,涵盖了几乎所有的制造技术。 旋转木马、烟花和游乐场设备只是纪录片 How it’s made 中重点介绍的一部分产品。其中,有一集特别讲述了高尔夫球是如何制作的。这是一个令人着迷的过程,包括橡胶板、钢桶、压模机等等。看完这集视频后,我受到了启发,想学习更多关于高尔夫球技术的知识。在今天的博文中,我们将探讨高尔夫球的演变历史以及仿真在未来高尔夫球设计中的作用。 高尔夫球的演变 全球每年约生产12 亿个高尔夫球,它们有多种风格和设计,包括: 单层球,仅由一种材料制成,以 Surlyn® 树脂为代表。常被用于小型高尔夫球场和练习场。 双层球,具有实心橡胶芯和塑料外壳,是普通高尔夫球手的首选。 三层球,包含内核芯、软橡胶套和外层。想要更好地控制击球的经验丰富的高尔夫球手会使用这种球。 四层球,由三层橡胶层和一层硬质外层制成,它们比大多数高尔夫球更昂贵,并且通常由挥杆快速的专业人士使用。 五层球,由聚氨酯橡胶包裹着四层橡胶层,相对较新,是职业高尔夫球手的热门选择。 一根 7 号铁球杆和一个双层高尔夫球。 尽管这五种主要类型的高尔夫球在很多方面有所不同,但它们有一个共同特点:圆圆的球表面上布满了凹痕。然而,也会有例外的情况。正如我们今天所知道的,高尔夫球已经经历了许多设计上的改变。下面,我们简要地探讨高尔夫球发展的五个不同阶段。 1. 木制球 人们普遍认为,现代高尔夫运动起源于 15 世纪的苏格兰。然而,关于第一个高尔夫球是由什么制成的,有很多争论。许多说法称,它们是用山毛榉和黄杨树等硬木雕刻而成的,而有一些人则不太相信,因为几乎没有证据支持这一理论。 无论最早的高尔夫球是否由硬木制成,有一点是肯定的:木质高尔夫球在高尔夫比赛中是不符合标准的。它们的飞行能力一般,主要是由于它们的重量。 2. 毛茸球 接下来是毛茸茸的球。这种球最初产于荷兰,然后进口到苏格兰。它是由一个圆形的皮革外壳制成的,里面装有牛毛或稻草。由于它们价格实惠,300 多年来一直是高尔夫球的热门选择。 3.羽毛球 羽毛球是在 17 世纪早期发明的。它与毛茸球很像,但里面装的不是牛毛,而是鹅毛或鸡毛。为了制作羽毛球,高尔夫球制造者会把湿羽毛塞进一块湿皮革里,当羽毛变干时,羽毛会膨胀,而皮革变干后会收缩。这就造就了非常紧凑和致密的高尔夫球。有一些人说,它的特征只有现代高尔夫球才具备。 羽毛球的缺点是它们非常昂贵。以今天的货币计算,一个羽毛球的价格从10美元到20美元不等(约 60 元到 120 元人民币)。 六个羽毛高尔夫球。图片由Geni提供自己的作品。图像在GNU 免费文档许可证下,通过Wikimedia Commons获得许可。 4. 古塔胶球(Gutty) 1848年, Robert Adams Paterso 发明了“gutty”,也就是古塔胶球,它彻底改变了高尔夫球的设计。它的形状是一个球体,由人心果树的树汁液干燥后制成。与羽毛球相比,古塔胶球虽然飞不了那么远,但是它的价格却便宜很多,让更多的人参与到高尔夫运动中来。 在使用古塔胶球的时候,高尔夫球手们很快就注意到一个奇怪的现象:表面被割裂的球飞得更远。这一发现促使高尔夫球制造商有意在他们设计的球上添加凹痕,通常是用荆棘图案(或类似浆果表面的图案)。 5. 哈斯克球(Haskell) 那么,无聊是怎么导致高尔夫球设计的下一次重大突破的呢?1898 年,Coburn Haskell 在等待朋友的时候,将橡胶线绑成一个球状物,以此来消磨时间。当他把球弹起来时,被它惊人的飞行能力吓了一跳。他的朋友 Bertram G. Work 建议他在上面加一层覆盖物,于是 Haskell 就诞生了。 早期的 Haskell 是由液体或固体内核、橡胶线层和由橡胶树液制成的外壳制成的。像古塔胶球一样,它们的表面也有荆棘图案。然而,当人们了解到倒置凹坑可以让球获得更好的飞行模式时,情况发生了变化。哈斯克球的发明为我们今天所熟知的高尔夫球铺平了道路。 高尔夫球的未来 可以说,高尔夫球已经经历了从由毛皮、羽毛到树脂液体制成的很长一段路,但是高尔夫球的进化并没有结束。制造商们一直在研究提高高尔夫球空气动力学和机械性能的方法。 与过去的高尔夫球制造商不同,工程师和设计师现在可以利用仿真分析不同层数、材料、凹坑数量和大小等高尔夫球的性能。让我们在今天的博客文章中探讨一个使用仿真设计高尔夫球的例子…… 模拟高尔夫球杆对高尔夫球的影响 正如我们在高尔夫球的冲击分析教程模型中演示的那样,工程师可以使用仿真分析高尔夫球杆撞击高尔夫球时的机械冲击。黏性罚函数可以用来模拟两个部分之间的接触,以稳定动态事件。仿真只观察了2毫秒的时间段,因为它只关注球杆击球的影响。   点击查看高尔夫球冲击分析教程模型的动态演示! 模型概述 模拟的高尔夫球杆的尺寸基于一个具有 34° 杆面角的 7 […]

模拟跑车侧门和后视镜上的风荷载

2021年 5月 27日

在这篇博文中,我们使用大涡模拟 (LES) 和结构分析来分析高速行驶的跑车的门和侧视镜上的风载荷和气流。

平面应力与平面应变的区别是什么?

2021年 5月 20日

我们生活在一个三维世界——如果考虑到时空的话,也许是四维世界。然而,在工程分析中,通常使用二维近似以节省建模和计算资源。

我应该使用哪个辐射接口建立传热模型?

2021年 3月 4日

与传导和对流传热机制相比,辐射传热有其独特的特点。例如,辐射不需要任何介质就能远距离传输热量,在非常高的温度下主要是辐射传热产生作用。此外,辐射依赖于方向、波长和温度。那么,在 COMSOL Multiphysics 软件中,哪个接口可以最好地考虑我们传热模型中的辐射?

在 COMSOL Multiphysics® 中模拟热机械疲劳

2021年 2月 18日

今天的客座博主是来自Lightness by Design公司的 Björn Fallqvist 博士,他在文中讨论了分析热机械疲劳的不同考虑因素和方法。 在这篇博客文章中,我们研究了 COMSOL Multiphysics® 软件中用于分析热机械疲劳的相关材料模型(模型使用了来自热机械疲劳测试的实验数据,以及参考文献中的材料参数)。随后,对在高温下运行的压力容器进行了分析,并使用非线性连续疲劳损伤模型评估疲劳寿命。 为什么要分析热机械疲劳? 在许多应用中,传统的等温疲劳分析是不够的,因为部件在高温下或在高温循环下工作时,材料性能与室温有很大不同。这种应用的典型例子是涡轮机和发电厂部件。 传统的疲劳分析,尤其是高周疲劳(high-cycle fatigue,HCF),不能直接考虑高温造成的影响。在高周疲劳区域中,载荷较低,蠕变等影响可以忽略不计。有时,S-N 曲线会减小,以解决温度升高时疲劳强度降低的问题。然而,这没有考虑到温度和载荷同时循环时的影响,即所谓的热机械疲劳。这种温度变化的影响在低周疲劳(low-cycle fatigue,LCF)区域中尤为重要,在该区域,需要考虑多个方面,主要是弹塑性和蠕变的材料性能变化。 评估高温下疲劳性能的一种方法是使用样品在多个温度下的稳定(通常是寿命中期)应力-应变曲线,以获得应力或应变幅度,并确定控制非线性应力-应变曲线的硬化参数。理论上,人们可以用一组特定的外加载荷和温度组合进行实验,并尝试根据实验结果估算疲劳寿命。然而,热机械疲劳测试需要相对较长的时间,并且成本较高。评估高温下疲劳能力的一种更方便的方法是使用描述应力水平和失效循环关系的解析表达式,并根据温度对其进行修正。 热机械疲劳试验 在热机械疲劳试验中,试样通常同时承受循环应变和循环温度。这可以是同相(IP)或异相(OOP)。对于前者,最大拉伸载荷与最高温度同时出现,对于后者,最大拉伸载荷出现在最低温度时。 为了与本篇博文中的实验结果进行比较,我们参考了参考文献 1,其中研究了 P91(一种常见的电厂用钢) 的热机械疲劳。我们从参考文献 2 中获得了模型材料参数,获得了应力-应变曲线。值得注意的是,对于参考工作,使用统一的模型(即黏塑性应变由塑性和蠕变分量组成)。然而,这只会影响模型蠕变部分的值。 热机械疲劳分析的材料模型 作为温度的函数的材料模型参数(参考文献2)如下表所示: Temp [°C] E [MPa] k [MPa] Q [MPa] b [-] a1 [MPa] C1 [-] a2 [MPa] C2 [-] Z [MPa s1/n] n [-] 400 187,537.0 96 -55.0 0.45 150.0 2350.0 120.0 405.0 2000 2.25 500 181,321.6 90 -60.0 0.6 98.5 2191.6 104.7 460.7 1875 2.55 600 139,395.2 85 -75.4 1.0 52.0 2055.0 463.0 […]

圣诞老人在派送礼物过程中遇到挑战

2020年 12月 22日

今天的文章作者来自于我们规模最大、历史最悠久的客户。这家客户非常著名,总部位于北极圈内,大多数时候人们可能会忘记他们的存在,但他们一直在留意着我们。他们一直拥有完美的客户满意度,但今年由于特殊原因,他们对圣诞季的产品配送任务有些顾虑……接下来,让我们一起了解 COMSOL 与这个来自北极圈的特殊客户的故事吧! 一个非常特殊的技术支持问题 随着年末的来临,我们的精灵团队正在礼物工厂中努力工作,为所有的小朋友和大朋友们准备各种玩具和礼物。您也许会认为我们是一个非常传统的组织,实际上我们的产品一直在使用最先进的技术,例如,我们的生物发光研究成果可以帮助圣诞老人照亮夜行的道路。 多年以来,我们一直使用 COMSOL Multiphysics® 软件进行产品研发。最近,我们使用 COMSOL Multiphysics 5.6 最新版本中的新功能解决了一个技术难题。 几天前,圣诞老人的太太克劳斯夫人很急切地找到我。她告诉我,由于疫情原因,圣诞老人今年一整年都待家里社交隔离,一不留神就吃了太多的饼干,胖了一大圈。克劳斯夫人担心今年圣诞老人可能会因为太胖而无法钻进所有的烟囱,造成一些礼品无法派送。她很友善地为我们提供了圣诞老人近期的照片,以及其他详细参数。 一个典型的问题描述。 我们意识到,这个问题可能会导致我们的礼品派送工作发生严重的中断,需要立即采取行动。说实话,这对我们来说并不是一项常规任务,所以我们联系了 COMSOL 技术支持部门,并询问他们如何最好地解决这个问题。一向乐于助人的 COMSOL 技术工程师立即向我们提供了一些有用的资源,并助我们一臂之力。 模拟圣诞老人 我们可以使用 COMSOL 5.6 版本中结构力学模块的新功能——动态接触功能来分析这个问题,另外还可以通过这篇文章(如何利用一个附加组件将图像转换为几何模型)介绍的方法直接将圣诞老人的照片导入 COMSOL 软件中。同时,我们还可以通过虚拟实验快速获取材料属性。只要做好了这些准备,我们就可以创建一个模型来模拟在派送礼物过程中,圣诞老人通过烟囱的场景。 我们正在检查网格,来来回回检查了好几遍。 下面,让我们来看看模拟结果…   太好了,圣诞老人可以通过! 圣诞快乐! 看到仿真的结果,克劳斯夫人非常高兴,并感谢所有精灵们的努力工作——无论是在北极为大家精心制作礼物的精灵,还是在 COMSOL 技术支持团队中为用户提供帮助的精灵。 最后,COMSOL 祝大家圣诞快乐,平安健康,并祝 2021 年万事如意! 关于作者 Winter Frost 是圣诞老人工作室的高级精灵工程师,专门负责拐杖糖的产品派送和形状优化。

使用 COMSOL® 探索硬度数的不明确性

2020年 9月 22日

一位客座博主讨论了如何使用模拟应用程序和COMSOL编译器™来创建用于研究硬度值、压痕测试数据等的产品。

利用 Dzhanibekov 效应解释网球拍为什么会翻转?

2020年 9月 1日

译者注:本篇博文介绍了什么是“网球拍效应”,它是如何命名的以及为什么会发生这种现象。使用 COMSOL Multiphysics 的多体动力学模块,我们可以模拟该效应,并通过仿真 App 深入理解该效应背后的数学原理。


第一页
上一页
1–8 of 144
浏览 COMSOL 博客