每页:
搜索

最新内容

如何在 COMSOL Multiphysics® 中进行多种材料优化

2021年 8月 18日

扫描对于表征系统和了解有关不同输入值对结果的影响非常有用。您可以在 COMSOL Multiphysics® 软件中进行多种不同类型的扫描,包括函数、材料和参数扫描。然而,精确以及创新的仿真结果也需要数学优化。

通过传热仿真分析 LED 灯泡设计

2021年 7月 22日

在我年轻的时候,我花了很多时间参加体育锻炼和比赛。随着年龄的增长,我的训练和比赛被安排的越来越晚。我经常会在晚上去踢足球。然而,当我踏上球场时,它几乎像白天一样明亮…… 依靠 LED 技术的球场内外 球场附近的灯光使我和我的球队可以一直比赛到深夜。 夜晚灯光明亮的足球场。图片来自 Jonathan Petersson,Unsplash 我的经历并不是独一无二的:几十年来,世界各地的运动队都会在晚上比赛和练习。然而,最近几年,你可能已经注意到,球场上的一些区域比以前更加明亮了。这是为什么呢? 为了提高可持续性,许多体育组织选择用发光二极管(LED)技术来取代他们体育场馆的传统照明系统。LED 灯泡不仅比传统的白炽灯泡更节能,而且更亮。根据美国环境保护署(EPA)的说法,“绿色运动”的好处包括: 保护生物多样性 降低运营成本 创造和扩大绿色产品和服务市场 其他更多的好处 一种常用来为各种户外(和室内)体育场馆和球场照明的 LED 灯泡是 LED 玉米灯泡。就像一个运动员将日常生活和体育锻炼融入到一个时间表中一样,LED 灯泡必须将许多功能融入到一个系统中。通过仿真,工程师可以研究和更好地理解 LED 技术背后的原理。我们将在今天的博客文章中探讨一个例子。 多功能 LED 灯泡 走进一家五金店,经过庭院家具、烧烤架和户外电源设备的陈列台,你可能会发现一片 LED 玉米灯泡整齐地藏在一个专门用于照明设备的过道里。在这个区域,你可以看到各种各样大小、样式和价格不同的 LED 灯。它们通常由一二百个微小的发光二极管组成,排列在一起并固定在金属或环氧树脂结构上。非常贴切地,LED 玉米灯泡是以与它们形状相似的蔬菜命名的:玉米棒。 一个 LED 玉米灯泡。图片来自 Dmitry G – 自己的工作。通过Wikimedia Commons 获得CC BY-SA 3.0许可共享。 玉米 LED 灯泡的独特形状可能会吸引消费者的眼球,但正是它们的节能性能让它们成为高强度放电(HID)和白炽灯泡的热门替代品。与白炽灯泡相比,LED 预计将节省 75% 的能源,使用寿命可延长 25 倍。(参考1)。 为了增加它们的多功能性,这些灯泡的色温范围从 2700K 到 6000K。LED灯泡的色温代表灯的颜色。高开尔文(5500K-6500K)的灯泡是亮白色,低开尔文(2700-3000K)的灯泡是暖白色。 LED 玉米灯泡有多种风格,可适用于室外和室内应用,照亮从车库和仓库到高速公路和体育场的所有地方。 设计 LED 的挑战 尽管 led 通常被认为比传统灯泡更有高效,但在将电转化为光方面,它们仍然不是 100% 的有效。它们的一些能量以热量的形式释放出来。这种热量会滞留在灯泡的颈部,导致灯泡中的电子元件(如芯片)随着时间的推移而退化。因此,有些人已经注意到,LED的寿命只是其包装上承诺的寿命的一小部分。因此,热管理是设计 LED 灯泡时的一个重要考虑因素。 传热建模可以用来优化LED灯泡设计的几何形状和材料,估计灯泡内将会发生的最高温度。今天,我们将探索LED玉米灯泡的热模型。 在COMSOL Multiphysics®中模拟LED灯泡 LED 灯泡冷却教程模型 LED 灯泡冷却教程模型通过考虑 LED 芯片的加热、浮力驱动气流的冷却和周围环境的辐射来估计 LED 玉米灯泡的温度。此外,还考虑了能量传输和动量传输之间的耦合,来计算 LED 灯泡内外的非等温气流。 […]

在 COMSOL Multiphysics® 中模拟点蚀

2021年 7月 13日

当一滴水附着在金属表面时,一般是腐蚀的开始。在某些情况下,如果有足够的接触时间,这种腐蚀可能会导致金属表面形成一个非常小的腐蚀坑。在这种条件下,腐蚀坑会逐渐发展,最终导致腐蚀坑底部成为阳极,腐蚀坑周围成为阴极,这样就会加速腐蚀坑底部的腐蚀,并可能形成一个大凹坑。

使用仿真对暖通空调系统设计进行微调

2021年 6月 23日

你是不是经常会发现:你感到办公室很热,而你的同事却冷得在发抖?或者可能是反过来,你才是那个感到冷的人。这就像“一个杯子是半满还是半空”这个古老的问题一样,对环境温度的感知因人而异。为了确保建筑物内居住者的最大舒适度,供暖、通风和空调(HVAC)系统工程师可以通过多物理仿真精确评估室内气候条件。

电压和接地是否存在?

2021年 6月 15日

当我在大学学习电气工程类课程时,我真的希望当时学习的一些知识能换种方式教授。例如,电压 和 接地 的概念就属于这一类知识,因为这些术语经常会在不易察觉的情况下被误用。

焦糖制作背后的科学原理

2021年 6月 6日

许多人(包括我自己)都喜欢看一档烹饪比赛节目The Great British Bake Off :不仅节目有趣,而且里面的食谱看起来也很美味。我在看节目时注意到的一件事情,就是当被要求用焦糖烤东西时,参赛者通常都会抱怨。原因是制作焦糖是一项不稳定的任务——一个错误的举动就会毁了整批成果。让我们在制作这种甜蜜的美味时,审视一下其中隐藏的复杂物理现象吧。 焦糖烹饪基础 你知道米尔顿·s·赫尔希,著名的赫尔希巧克力棒的创造者,他是以制作焦糖开始他的糖果生涯的,而不是巧克力?或者说现在流行的咸焦糖味就是在 20 世纪 70 年代被一个叫亨利·勒·鲁的巧克力商发明的?除了这些有趣的事实,从制作到理解复杂的化学过程本身还有很多我们不知道的焦糖化过程。 从技术上来说,我们制作焦糖实际上需要的唯一成分是糖(尽管很多配方中也需要水、黄油、奶油和一点盐来降低甜味)。制作过程本身似乎很简单。根据精致烹饪 这篇文章讲述的,制作焦糖可以用干法或湿法制备: 干法制备: 将白砂糖在中高温下烧至冒泡,最后变成金黄色 湿法制备:往锅里加点水,这样糖可以煮得更久,颜色变化丰富,味道也更好 “炒糖色”的制作过程(从开始加热需要一直搅拌)。 焦糖化后的白砂糖(图中用的是蔗糖)。 看起来似乎很容易,对吧?没那么简单。如果我们没有注意到一些重要的要点,那么你炒的糖色最终可能会被扔进垃圾桶,而不是美味的焦糖布丁或巧克力蛋糕了! 燃烧 在用干法炒糖色时,温度的把控是很重要的,这样糖就不会烧焦(也就是我们常说的火候)。提示:精密的温度计实时测量焦糖的精确温度及其变化不失为一个好方法。下面的表格是使用专业的温度计测量的制作焦糖的全过程。 温度 焦糖的状态 160 ℃ (320 ℉) 砂糖变成透明的、融化的液体糖 171 ℃ (340 ℉) 液体糖开始变成浅棕色;冷却时易碎 179 ℃ (355 ℉) 焦糖开始变成中棕色;冷却时变硬 185 ℃ (365 ℉) 焦糖变成深棕色;冷却时又软又黏 210 ℃ (410 ℉) 焦糖变得又黑又苦;通常在这个阶段用作着色剂 需要考虑温度的另一个重要方面是:当焦糖开始变成棕色时,这意味着物质中80% 的水分已经蒸发了。水在沸腾时需要大量的能量,因此水沸腾时的温度是恒定。当大多数水蒸发后,所有的能量都被用来提高焦糖的温度。焦糖的温度会快速上升,以至于很难将其保持在所需的温度范围内,如上表所示。因此,焦糖可能会燃烧,变得又苦又黑。 重结晶 如果你选择用湿法炒糖色,在糖里加水,那么会存在一定风险:糖浆会溅到锅的侧面。水蒸发后,留下了糖晶体。如果有一颗糖晶体掉进煮焦糖的锅里,它会引发糖晶体的连锁反应,使整锅糖都变硬。结果呢?会变成粗糙的颗粒状焦糖,这在大多数食谱中是不可用的。 炒糖色时,需要密切监控锅的侧面有没有沾到糖晶体。 许多厨师,包括前面提到的 The Great British Bake Off 节目中的参赛者有一种特殊的方法来避免重结晶:就是经常用湿面饼刷锅的侧面,以确保蒸发的糖浆不会形成糖晶体。 焦糖化过程及其背后的化学反应 当你炒制糖色时,可能会认为砂糖晶体会直接融化成酱汁——事实上,并没有这么简单。相反,糖在这个过程中经历了一个复杂的化学反应,叫做“非酶褐变反应”,其中的化合物会被热分解,而没有蛋白质或酶参与。 就普通蔗糖而言,焦糖化过程包括 4 个主要步骤。首先,发生 蔗糖转化,其中二糖蔗糖被分解成两个单糖:葡萄糖和果糖。 然后,施加的热量会发生冷凝。糖失去水分并相互反应,形成一种叫做二果糖酐的化合物。之后,进一步发生脱水反应,不同的糖之间发生更多的化学反应。最后,糖分子断裂并发生聚合。最终生成的三种大的棕色分子赋予焦糖味道、色泽和黏性: 焦糖酐(C12H18O9) 焦糖烯 (C36H50O25) 焦糖素 (C125H188O80) 此外,这个过程还会产生更小、更易挥发的分子,使焦糖具有美味的香气和风味,包括: 呋喃,产生坚果味 麦芽酚,产生烘烤的味道 乙酸乙酯,产生果味和芳香 二乙酰,赋予焦糖标志性的黄油味 焦糖化过程取决于许多不同的变量,包括糖的类型、加热温度和糖的加热时间等。事实上,焦糖化的程度取决于你想要用它来做什么。 焦糖化:不要与美拉德反应混淆 […]

优化扬声器组件的 3 个示例

2021年 6月 3日

你还记得你参加的第一场演唱会吗?一想起我的第一次经历,仿佛又回到了 2007 年 12 月 30 日。当时,我坐在一个拥挤的中型剧院里,手里拿着海报,房间里回荡着倒计时声:5、4、3、2、1! 然后,美国创作型歌手 Fergie 走了出来。我将永远记住这一天,这让我对未来几年的现场音乐充满了期待。放置在剧院周围的扬声器让我欣赏了一场完美的音乐会,即使我的座位在会场的后面。 为什么要优化扬声器组件? 无论是用于家庭影院系统、健身房、家庭野餐还是音乐会场地,扬声器都要表现出最佳的性能。为了设计高性能扬声器,我们可以使用仿真优化它的各种组件。例如,我们可以使用 COMSOL Multiphysics 软件对高音罩和波导、磁路和弹波(也叫定位支片)进行形状或拓扑优化。 下面,我们来查看关于这些组件优化的三个例子…… 1.优化高频扬声器 高频扬声器是一种小型、轻便的喇叭驱动器,目的是产生高频声(约 2kHz 至约 20kHz)。在英文中,非常贴切地将它命名为小鸟、发出的鸣叫声 “tweet tweet”。 理想的高频扬声器驱动器能得到平坦的灵敏度曲线,无论听众的位置如何,声音都是一样的(它具有全向辐射特性)。然而,所有扬声器驱动器设计中都会遇到声盆分裂和波束效应,这将对高频扬声器的质量产生负面影响。物理定律只是对高频扬声器的理想程度设定了一个极限。最佳高频扬声器设计将具有平坦的频率响应和尽可能多的空间覆盖范围。 通过使用形状优化改变高音扬声器组件的形状,您可以提高高频扬声器的整体性能。使用 COMSOL Multiphysics 提供的高音罩和波导管形状优化教程模型,您可以学习如何对高音罩和波导管进行形状优化,以得到其最优的空间和频率响应。这些优化需要在一定频率以及空间范围内进行。该教程显示了设置此问题的步骤。 高频扬声器的主要部件。 这个扬声器模型的主要组成部分包括: 波导 球顶 多孔吸声体 音圈 悬架 音圈骨架 悬架、球顶和音圈都是用 COMSOL 中的 固体力学 和壳 接口模拟的。Thiele–Small模拟电路用于包含驱动器的电磁特性。高频扬声器通常含有一个泡沫件,在设计中用来避免激发不同的动态效应(如共振和圆顶柔性模式),因此该模型中添加了一个这样的泡沫件。此外,模型中还添加了结构阻尼。 结果 在该模型中,通过与初始高频扬声器形状的性能进行比较,分析了优化后高频扬声器设计的性能。下面,您可以查看两个高频扬声器轴上1m处的声压级(SPL)。平坦的目标SPL由黑色的水平虚线表示。请注意,优化的高频扬声器在5 kHz至20 kHz的期望频率范围内产生几乎平坦的响应。此外,每个设置都显示了两组曲线。这两组曲线展示了使用两种不同的方法计算模型中的远场响应。 1m 处的轴上 SPL 接下来,我们可以比较在 20kHz 的最大频率下工作时优化的和初始的高频扬声器设计。由此,我们可以看到 SPL 分布和两个高音罩、音圈骨架和悬架的结构变形。如下图所示,高亮部分结果表明与优化设计相比,初始设计在球顶和音圈骨架会发生更大的变形(也称为声盆分裂)。 在图中,可以看到在最高频率下初始高频扬声器设计(左)和优化高频扬声器设计(右)的变形。 最后,我们还可以研究两种设计的方向性,如下图所示。方向性图在一个图中突出显示了频率和空间响应。方向性优化的区域用灰色框标记。从图中可以看出,响应在频率上是平坦的,同时具有从大约 -10° 到 +10° 的均匀空间覆盖。 初始设计(左)和优化设计(右)的方向性图。这里,各种颜色代表与目标 SPL 的偏差。黑线代表 +-3dB 和 +-6dB 的限值。 总的来说,这个教程强调了一种使用形状优化来优化高频扬声器设计性能的方法。想尝试一下自己设计吗?从 COMSOL 案例库下载模型文档和MPH文件,详细了解如何建立高音罩和波导形状优化模型。 2.扬声器磁路的优化 扬声器驱动器中包含磁路,将磁通量集中到气隙中。在气隙内,线圈垂直于磁力线放置,并连接到扬声器的音圈骨架和球顶。当交流电通过线圈时,电磁力引起线圈运动。正如预期的那样,扬声器薄膜会接收这种运动,与周围的空气相互作用,并在此过程中产生声波。 设计良好的磁路通常由铁磁极片和顶板组成,它们能够: 使集中在线圈上的磁通量最大 在整个线圈上提供均匀的磁场 磁路的性能也通常由BL参数(力因子)来表征。在磁路中,BL是气隙中磁通量与线圈长度的乘积。高性能磁路具有大的 BL 参数,但也希望BL参数对于不同的音圈位置x是恒定的。这就是为什么该参数通常被表示为 BL(x)。平坦的 BL(x) 曲线通常会导致较小的失真,因为它会导致扬声器系统的该部分的线性度。这里,使用拓扑优化来优化磁路。 磁路仿真 使用磁路拓扑优化教程模型,可以对磁路组件执行两种不同的拓扑优化研究。第一个优化研究是为了得到轻质的磁路设计,该磁路设计在气隙中具有强磁场强度,并且在静止位置具有最大的BL系数。第二个优化研究的目的是产生具有平坦BL(x)曲线的磁路。第一种设计非常适合高频工作的扬声器(如高频扬声器),而第二种设计非常适合低频工作的扬声器(如低频扬声器)。 […]

模拟跑车侧门和后视镜上的风荷载

2021年 5月 27日

在这篇博文中,我们使用大涡模拟 (LES) 和结构分析来分析高速行驶的跑车的门和侧视镜上的风载荷和气流。


浏览 COMSOL 博客