研究人体集总模型中的振动

Bridget Paulus 2018年 8月 21日

如果你经历过自驾旅行,就会知道它带来的不仅是欢乐的记忆,还有身体上的酸痛。长时间驾驶之后身体疼痛的罪魁祸首之一是全身振动(WBV),它可能导致疲劳、晕车甚至严重的健康问题。为了给汽车和其他应用设计减少 WBV 的系统,工程师需要高效地分析人体的振动效果。仿真可以助工程师一臂之力。

了解更多

Thomas Forrister 2018年 8月 17日

“如果你想知道宇宙的秘密,就用能量、频率与振动来思考。”— 尼古拉·特斯拉 我们能“看见”声音吗?就算不能直接看到,但我们离这个目标已经不远了。通过改变看问题的角度,我们可以了解声学现象的本质。观察声学现象的一种方法是研究称为克拉尼板 的固体介质中的驻波。这是一种特殊技术,可以在板上产生图形,从而揭示声音的物理性质。

了解更多

Brianne Christopher 2018年 8月 14日

如果你曾经参观过伦敦圣保罗大教堂内的华丽穹顶,想必你当时说话的时候一定非常谨慎。瑞利勋爵大约于 1878 年发现,拱形结构呈现出一种有趣的声学现象,即在穹顶的一边小声说话,在其他位置可以听得非常清楚。瑞利将这种效应称为“回音廊”。令人惊讶的是,你完全可以在另一个科学领域观察到类似的效果:光波在光环谐振器中传播。

了解更多

博客分类

Bridget Paulus 2018年 7月 30日

从家用暖通空调系统到航天器喷射器,扩压器在各个领域得到了广泛的应用。例如,扩压器常用于超音速飞机,比如其中的冲压式喷气发动机,用于减缓流体流动并增大静压。为了设计适用于超音速应用的跨音速扩压器,工程技术人员必须考虑高速湍流和激波等因素。正如本文中的基准模型所阐明的,这些复杂现象可以借助 COMSOL® 软件进行精确的分析。

了解更多

Thomas Forrister 2018年 7月 23日

扬声器阵列的主要设计目的是实现比单个扬声器更广的声音覆盖范围。同时,阵列的辐射方向图必须与单个扬声器的辐射方向图毫无区别。使多个扬声器产生呈放射状分布的声音的一种方法是使用贝塞尔面板。工程技术人员通过分析贝塞尔面板系统的基准模型,可以优化扬声器阵列和其他声学系统的设计。

了解更多

博客分类

Caty Fairclough 2018年 7月 13日

环行器有点类似圆形交叉路口(也称为旋转或环形交叉口):它们内部的运动仅发生在一个方向上,而且每条路径都兼作入口和出口。然而,在环行器中,微波信号总是在下一个可用端口处出射。由于这种特性,环行器可用于涉及到将发射器和接收器耦合到公共天线的应用。为了确保环行器能够成功运行,电气工程师可以使用电磁仿真来研究环行器设计。 微波环行器快速入门 微波环行器是一种非互易多端口设备,通常包含三个 Y 形端口。在环行器中,来自一个端口的入射波只能耦合到下一个端口。由于这项功能,电气工程师经常使用环行器来隔离微波元件。 环行器的简单示意图。图片由 Geek3 提供。在 CC BY-SA 3.0 许可下使用,通过 Wikimedia Commons 分享。 微波环行器的一个常见应用是双工器。在环行器的作用下,无线电通信系统或雷达单元中的发射器和接收器能够共享公共天线,同时仍将接收器与发射器隔离。 为了构建环行器,工程师经常使用各向异性材料,如铁氧体,因为它们具有高电阻和高磁导率。但是,材料的选择会影响波在环行器端口之间传播的方式。在本例中,我们使用 COMSOL Multiphysics® 软件附加的“RF 模块”来精确分析铁氧体材料和环行器的内部工作原理。 使用 COMSOL® 软件模拟三端口铁氧体环行器 下面所示的无损三端口铁氧体环行器实例以三个 120° 角连接的矩形波导部分构成。在每个分支内,相同的介电调谐元件被用来匹配 Y 形接头。铁氧体柱置于接头中心,并被 H0 偏置磁场沿轴线方向磁化。 三端口微波环行器的几何结构。 该模型分析了 10G Hz 的 TE10 波在环行器中的传输过程。由于 TE10 波导模式在横向上没有变化,因此可以使用二维模型来简化分析。 包含介电调谐元件的二维环行器几何结构。 环行器的一个设计目标是通过匹配接头来减少输入端口的反射。为了匹配接头,必须确定当调谐元件采用各种不同的材料时,TE10 波在三个端口之间的传播效果。为此,您可以计算 TE10 基模下与调谐元件介电常数相关的 S 参数(衡量环行器的透射率和反射率)。 铁氧体环行器设计能够正常运行吗? 使用“RF 模块”,您可以对环行器设备进行 S 参数分析。下图比较了介质匹配元件(eps_r)的相对介电常数与 S11 参数,后者与端口 1(输入臂)的反射系数有关。 该结果表明设备在 eps_r = 1.29 附近实现了最小反射。 S11 参数与相对介电常数的关系。 在第二张绘图中,仔细查看 eps_r 值等于 1.29 时的情况。您可以使用此值来看到约为 -35 dB 的反射系数。这对于环行器设计来说是一个很好的值。 微波环行器中的电场模和功率流。 从上图中的功率流箭头可以看出,微波能量按照预期在一个方向上从一个端口流向另一个端口。另外,在电场大小绘图中没有驻波模式。基于这些发现,我们可以得出结论,环行器设计的行为表现符合预期。 利用电磁仿真,电气工程师可以有效推进微波环行器的设计进程。 后续操作 如希望试用微波环行器案例,请单击下方按钮,跳转至“案例下载”页面,您可以获得详细的建模说明和 MPH 文件(请注意,这需要有效的软件许可证和 COMSOL Access 帐户)。 […]

了解更多

博客分类

Brianne Christopher 2018年 7月 11日

在生活中,人们经常用 turbocharged(涡轮增压)这个词来形容一种精神百倍的状态,比如 turbocharged 咖啡比一杯普通咖啡更加提神。但涡轮增压器的真正功能不是提升精神,而是提升速度;不是在清晨的咖啡杯中,而是在内燃机中发挥作用。涡轮增压器利用涡轮实现强制进气,它通常使用流体动力轴承作为支撑。然而,轴承会自然产生可导致负阻尼和系统故障的交叉耦合轴承力。借助转子动力学建模,你可以分析交叉耦合轴承力给涡轮增压器设计带来的影响。

了解更多

Brianne Christopher 2018年 6月 25日

1998 年,乡村歌手 Faith Hill 在“This Kiss”中歌唱到,陷入爱河中的她仿佛正经历一场“离心运动”。我们猜测,要么她其实想尽快与男主角分手,要么她不幸将离心 与向心 混为了一谈。我们得原谅这首 20 年经典老歌的一点失误——毕竟相比于歌词创作,认识离心力效应对于各种工业组件设计——例如汽车中的离心泵——更为重要。

了解更多

Caty Fairclough 2018年 6月 21日

任意拆开一套现代电子产品,我们基本上都会看到印刷电路板(printed circuit board,简称 PCB)的身影。仔细观察这个常见的组件,你可以看到它表面上布设了很多条铜线。这些导线可以利用电沉积工艺进行印制,因为这项工艺能够通过电化学反应改变器件表面。为了提高面向电路板制造的电沉积技术,工程师可以借助数值建模。

了解更多

博客分类

Caty Fairclough 2018年 6月 20日

硅平面器件、成像传感器和微处理器内通常都包含了金属-氧化物-硅(MOS)电容器。为了保证这些器件正常运行,工程师可以使用仿真准确分析电容器设计。COMSOL Multiphysics® 软件附加的“半导体模块”为用户提供了多种分析优化方法……

了解更多


博客分类


博客标签

1 2 3 4 45