每页:
搜索

优化 博客文章

如何在 COMSOL Multiphysics® 中进行多种材料优化

2021年 8月 18日

扫描对于表征系统和了解有关不同输入值对结果的影响非常有用。您可以在 COMSOL Multiphysics® 软件中进行多种不同类型的扫描,包括函数、材料和参数扫描。然而,精确以及创新的仿真结果也需要数学优化。

优化扬声器组件的 3 个示例

2021年 6月 3日

你还记得你参加的第一场演唱会吗?一想起我的第一次经历,仿佛又回到了 2007 年 12 月 30 日。当时,我坐在一个拥挤的中型剧院里,手里拿着海报,房间里回荡着倒计时声:5、4、3、2、1! 然后,美国创作型歌手 Fergie 走了出来。我将永远记住这一天,这让我对未来几年的现场音乐充满了期待。放置在剧院周围的扬声器让我欣赏了一场完美的音乐会,即使我的座位在会场的后面。 为什么要优化扬声器组件? 无论是用于家庭影院系统、健身房、家庭野餐还是音乐会场地,扬声器都要表现出最佳的性能。为了设计高性能扬声器,我们可以使用仿真优化它的各种组件。例如,我们可以使用 COMSOL Multiphysics 软件对高音罩和波导、磁路和弹波(也叫定位支片)进行形状或拓扑优化。 下面,我们来查看关于这些组件优化的三个例子…… 1.优化高频扬声器 高频扬声器是一种小型、轻便的喇叭驱动器,目的是产生高频声(约 2kHz 至约 20kHz)。在英文中,非常贴切地将它命名为小鸟、发出的鸣叫声 “tweet tweet”。 理想的高频扬声器驱动器能得到平坦的灵敏度曲线,无论听众的位置如何,声音都是一样的(它具有全向辐射特性)。然而,所有扬声器驱动器设计中都会遇到声盆分裂和波束效应,这将对高频扬声器的质量产生负面影响。物理定律只是对高频扬声器的理想程度设定了一个极限。最佳高频扬声器设计将具有平坦的频率响应和尽可能多的空间覆盖范围。 通过使用形状优化改变高音扬声器组件的形状,您可以提高高频扬声器的整体性能。使用 COMSOL Multiphysics 提供的高音罩和波导管形状优化教程模型,您可以学习如何对高音罩和波导管进行形状优化,以得到其最优的空间和频率响应。这些优化需要在一定频率以及空间范围内进行。该教程显示了设置此问题的步骤。 高频扬声器的主要部件。 这个扬声器模型的主要组成部分包括: 波导 球顶 多孔吸声体 音圈 悬架 音圈骨架 悬架、球顶和音圈都是用 COMSOL 中的 固体力学 和壳 接口模拟的。Thiele–Small模拟电路用于包含驱动器的电磁特性。高频扬声器通常含有一个泡沫件,在设计中用来避免激发不同的动态效应(如共振和圆顶柔性模式),因此该模型中添加了一个这样的泡沫件。此外,模型中还添加了结构阻尼。 结果 在该模型中,通过与初始高频扬声器形状的性能进行比较,分析了优化后高频扬声器设计的性能。下面,您可以查看两个高频扬声器轴上1m处的声压级(SPL)。平坦的目标SPL由黑色的水平虚线表示。请注意,优化的高频扬声器在5 kHz至20 kHz的期望频率范围内产生几乎平坦的响应。此外,每个设置都显示了两组曲线。这两组曲线展示了使用两种不同的方法计算模型中的远场响应。 1m 处的轴上 SPL 接下来,我们可以比较在 20kHz 的最大频率下工作时优化的和初始的高频扬声器设计。由此,我们可以看到 SPL 分布和两个高音罩、音圈骨架和悬架的结构变形。如下图所示,高亮部分结果表明与优化设计相比,初始设计在球顶和音圈骨架会发生更大的变形(也称为声盆分裂)。 在图中,可以看到在最高频率下初始高频扬声器设计(左)和优化高频扬声器设计(右)的变形。 最后,我们还可以研究两种设计的方向性,如下图所示。方向性图在一个图中突出显示了频率和空间响应。方向性优化的区域用灰色框标记。从图中可以看出,响应在频率上是平坦的,同时具有从大约 -10° 到 +10° 的均匀空间覆盖。 初始设计(左)和优化设计(右)的方向性图。这里,各种颜色代表与目标 SPL 的偏差。黑线代表 +-3dB 和 +-6dB 的限值。 总的来说,这个教程强调了一种使用形状优化来优化高频扬声器设计性能的方法。想尝试一下自己设计吗?从 COMSOL 案例库下载模型文档和MPH文件,详细了解如何建立高音罩和波导形状优化模型。 2.扬声器磁路的优化 扬声器驱动器中包含磁路,将磁通量集中到气隙中。在气隙内,线圈垂直于磁力线放置,并连接到扬声器的音圈骨架和球顶。当交流电通过线圈时,电磁力引起线圈运动。正如预期的那样,扬声器薄膜会接收这种运动,与周围的空气相互作用,并在此过程中产生声波。 设计良好的磁路通常由铁磁极片和顶板组成,它们能够: 使集中在线圈上的磁通量最大 在整个线圈上提供均匀的磁场 磁路的性能也通常由BL参数(力因子)来表征。在磁路中,BL是气隙中磁通量与线圈长度的乘积。高性能磁路具有大的 BL 参数,但也希望BL参数对于不同的音圈位置x是恒定的。这就是为什么该参数通常被表示为 BL(x)。平坦的 BL(x) 曲线通常会导致较小的失真,因为它会导致扬声器系统的该部分的线性度。这里,使用拓扑优化来优化磁路。 磁路仿真 使用磁路拓扑优化教程模型,可以对磁路组件执行两种不同的拓扑优化研究。第一个优化研究是为了得到轻质的磁路设计,该磁路设计在气隙中具有强磁场强度,并且在静止位置具有最大的BL系数。第二个优化研究的目的是产生具有平坦BL(x)曲线的磁路。第一种设计非常适合高频工作的扬声器(如高频扬声器),而第二种设计非常适合低频工作的扬声器(如低频扬声器)。 […]

利用拓扑优化设计区域热网

2021年 2月 8日

发电厂在冬季可以利用热电联产达到高效供电。它是如何做到的呢?依靠区域热网。以前,这种网络设计仅限于小型网络的线性模型或非线性模型。最近的研究表明,我们可以使用基于梯度的优化的非线性模型设计大型网络(参考文献 2)。

玻色-爱因斯坦凝聚中的涡旋晶格形成模拟

2020年 11月 17日

我们讨论了漩涡晶格的形成,这是一个可以使用COMSOL Multiphysics®和半导体模块模拟的迷人过程。

基于方程的时间空间离散建模

2020年 9月 24日

COMSOL Multiphysics® 软件的核心优势之一是可以修改计算模型中的几乎所有表达式。我们必须谨慎使用这项功能,但是可以借助它实现其他很强大的功能。在这篇博客中,我们将以一个带有平移的二维(2D)热模型为例,先将某些材料属性设置为零,然后发现此问题变为类似于求解一维(1D)瞬态模型;最后思考这项功能是如何简便、快速地实现一些类型的优化问题。

如何使用拓扑优化结果创建几何模型

2020年 1月 24日

拓扑优化通常不是设计进程的最后一步。实际上,您可以利用拓扑优化研究的结果对几何结构进行模拟,以推动下一步分析。

通过集总模型估算锂离子电池的参数

2019年 10月 24日

锂可用于各种场合,不过用在电池上可能是最引人注目的。锂离子电池可用于电动汽车,储能系统等。当锂离子电池用在这些领域时,工程师必须首先通过电化学分析确保其性能能够达到预期。

光声光谱腔拓扑优化分析

2019年 5月 24日

在气体光声光谱学中,光和声用于检测周围环境中有害化合物的浓度。与其他光谱技术相比,光声学由于其检测方案而显示出最高的信噪比——但由于产生的声波通常太弱而不能被麦克风检测到,因此我们使用声学单元来放大信号。


第一页
上一页
1–8 of 25
浏览 COMSOL 博客