通用 博客文章
学习高效地求解多物理场问题
我们总是被问到该如何更有效率地学习求解多物理场问题。过去的几周,我一直在撰写阐述 COMSOL Multiphysics 核心功能系列博客。这些博客旨在帮助您理解有关高效开发精确的多物理场模型背后的关键理念。今天,我将整体回顾一下该系列博文。
提高多物理场问题的收敛性
在“求解多物理场问题”这篇博客中,我们介绍了 COMSOL 中用于求解稳态多物理场问题的全耦合和分离算法。这里,我们再来看一下能够加快这两种方法收敛的一些技巧。
求解多物理场问题的 2 种算法
这篇博客,我们将介绍 COMSOL Multiphysics 中求解多物理场有限元问题的两类算法。到目前为止,我们已经学习了如何进行网格划分,以及求解线性和非线性单物理场有限元问题,但是还没有考虑过同一个域内存在多个相互影响的不同物理场的问题。
非线性静态有限元问题网格剖分的注意事项
我们已在求解器系列的部分博客中讨论了求解非线性静态有限元问题、用于改善非线性问题收敛的载荷递增,以及用于改善非线性问题收敛的非线性递增。我们还介绍了线性静态问题网格剖分的注意事项,以及在网格剖分过程中如何找到奇异性并对此进行处理。
通过递增非线性改进非线性问题的收敛
正如之前在 “非线性问题的载荷递增“博客中所讨论的,当求解一个问题时,我们可以从一个已知解的无载荷问题开始,然后使用延拓法逐渐递增载荷来进行求解。这个算法同样适用于理解接近失效的载荷时的情况。然而载荷递增并非适用于所有情况,在某些情况下可能无法发挥效用。本篇博客中,我们将介绍如何通过非线性递增改进问题的收敛。
非线性问题的载荷递增
正如我们之前在“求解非线性稳态有限元问题”博客中所看到的,并不是所有的非线性问题都可通过阻尼 Newton-Raphson 法求解。尤其是当选择了一个不合适的初始条件或者设定一个无解的问题时,只会造成非线性求解器持续执行迭代而无法收敛。在此我们介绍一种更为可靠的非线性问题解决方案。
求解非线性稳态有限元问题
本篇博客中,我们将简要介绍求解非线性稳态有限元问题的算法,并通过一个非常简单的一维有限元问题来演示这些内容,即我们在“求解线性稳态有限元模型”博客中所讨论的那个问题。
线性方程组的解:直接和迭代求解器
本篇博客中,我们将向您介绍使用 COMSOL 求解任何有限元问题时,其中所用的两类线性方程组的求解算法。这些信息与理解求解器的内部工作原理,以及内存使用如何随问题大小变化等相关。