每页:
搜索

最新内容

模拟电磁波和周期性结构

2014年 1月 17日

我们经常想要模拟入射到周期性结构中的电磁波(光、微波),例如衍射光栅、超材料,或频率选择表面。这可以使用 COMSOL 产品库中的 RF 或波动光学模块来完成。两个模块都提供了 Floquet 周期性边界条件和周期性端口,并将反射和透射衍射级作为入射角和波长的函数进行计算。本博客将介绍这类分析背后的概念,并将介绍这类问题的设定方法。

求解代数场方程

2014年 1月 14日

COMSOL Multiphysics® 通常用于求解 PDE,ODE 和初始值问题。但是,您是否知道它也可求以解决代数方程,甚至超越方程?

使用 COMSOL 模拟 RF MEMS 开关

2014年 1月 7日

RF MEMS 开关通常由微机械桥或悬臂、衬底和电极或介电层组成。您可以使用 RF 仿真来设计这样的器件。

共轭传热

2014年 1月 6日

我们将在本篇博客中解释共轭传热 这一概念,并会展示相关应用。共轭传热综合了固体传热和流体传热。固体传热以传导为主;流体传热则以对流为主。我们在很多情况下都能观察到共轭传热。如设计散热器时,就可以结合散热器中的传导和周围流体中的对流来进行优化。

建立子模型:如何分析大型模型中的局部效应

2014年 1月 1日

你有没有碰到过对一个具有大量边界条件的特别大的结构进行建模?了解如何使用子模型,这是在COMSOL Multiphysics®中分析大型模型局部效应的一种建模技术。

由二维轴对称电磁模型创建可视化三维绘图

2013年 12月 31日

今天,我们将介绍在 COMSOL 软件中如何绘制矢量场的三维视图,这些矢量场由 RF 模块和波动光学模块中的电磁波、频域 接口的二维轴对称公式计算获得。 由二维轴对称解生成三维绘图 回想一下,COMSOL 软件中的时谐分析 假设场分量根据 e^{j\omega t} 在时间上振荡,其中 \omega 是角频率。在二维轴对称公式中,电场的角度依赖性由 e^{-j m \phi} 计算,其中 m 是用户指定的整数。由时间和角度的相关性 e^{j(\omega t-m \phi)},可知电场围绕 Z 轴 旋转。我们的目标是由具有这种角度依赖性的二维轴对称解创建三维绘图。 使用二维旋转数据集创建三维绘图 在计算出二维轴对称问题的解之后,COMSOL Multiphysics 会自动生成一个名为“二维旋转”的位于“数据集”节点下的二维数据集,如下图所示。 旋转数据集可用于绘制三维视图。由于我们绘制的是三维绘图,因此将完成一次从 0° 到 360° 的完整旋转。“二维旋转1”的设置如下所示。可以看到,在 “旋转层”下,起始角度被设置为 0,旋转角度被设置为 360。 二维轴对称计算中的平面坐标为 (r,z)。由于角度 \phi 不属于计算域,因此没有被定义。不过,可以通过选中“定义变量”旁的复选框将它添加为三维数据集中的坐标。“二维旋转1”数据集中的角度变量名被设置为“rev1phi”,并可用于下文中的绘图和导出值的表达式中。 如下图所示,考虑一个带矩形截面的轴对称谐振腔。在二维轴对称公式中仅模拟矩形截面。 我们可以使用特征频率研究计算谐振模式。假设我们想绘制 m = 1 模式的场量。下图左侧为在 rz 平面 绘制出的电场大小。我们还可以在将空腔一分为二的表面上绘制电场的大小,这是使用 xy 平面 上的“emw.normE”三维切面图绘制的,平面数被设为 1。右下图中绘制了电场的大小。由于场是围绕 Z 轴 旋转的行波,因此它是轴对称的,这也是因为它遵循 | e^{j(\omega t – m \phi)} | = 1。 绘制电场的径向分量 现在,我们来绘制空腔平面内电场径向分量的实部。具体来说,我们将绘制 t=0 时的 Re { E_r(r,z) \, e^{j(\omega t-m \phi)} },其中 […]

使用自适应网格划分进行局部解的改进

2013年 12月 27日

选择网格对于解决方案的准确性很重要。 在这里,我们介绍了一种自适应网格划分技术,以基于局部度量细化网格。

学习高效地求解多物理场问题

2013年 12月 26日

我们总是被问到该如何更有效率地学习求解多物理场问题。过去的几周,我一直在撰写阐述 COMSOL Multiphysics 核心功能系列博客。这些博客旨在帮助您理解有关高效开发精确的多物理场模型背后的关键理念。今天,我将整体回顾一下该系列博文。


浏览 COMSOL 博客