最新内容

龙虾壳与防弹衣有什么关系?
在美国新英格兰地区,尤其是缅因州(Maine),以一种外观奇特的美味而著称:龙虾。这种甲壳动物最引人注意的特征之一就是他们拥有极强而且灵活的下腹部,麻省理工学院(MIT)的一组研究人员正在计划以此为灵感开发一种新型防弹衣。 在海的底部,但非食物链的末端 如果你曾经享受过水煮龙虾晚餐的乐趣,那么你就会知道,撬开龙虾的钳子和外壳可能会有些困难,因为它通常需要复杂的开裂方式和其他辅助工具。这种壳在煮熟时会变成红色,有时是蓝色,它可以保护龙虾免受水下掠食者的侵害。 把龙虾翻转并颠倒过来,你会发现它的尾巴的下面是一层清晰的、薄薄的壳。这层壳可能看起来很脆弱并且细腻,但实际上却非常坚固、强韧和灵活。薄薄的一层能保护龙虾在沿海底爬行时,其身体可免受沙尘、岩石和贝壳的侵蚀,也避免了捕食者和那些讨厌的陷阱。同时,它也是一种具有柔韧性和弹性的膜,这一点从龙虾能够任意转动尾巴抵御外侵的能力中得到证明。 这种包含 90% 的水和约 10% 的纤维质几丁质的水凝胶所组成的膜激起了MIT一个研究团队的兴趣(该研究团队与四川大学、哈佛大学的研究人员合作),旨在设计一种新型的、兼具灵活性和保护性的军事防弹衣。他们在 2019 年 4 月的Acta Biomaterialia 上发表了一篇题为 Natural hydrogel in American lobster: A soft armor with high toughness and strength 的论文。尽管这里讨论的研究人员可能使用了其他软件,但我们也可以使用 COMSOL Multiphysics® 进行此进行研究。 龙虾壳的生物力学分析 研究人员首先在柔性膜上进行了各种力学实验。一个有趣的发现是:该膜可以承受剧烈的拉伸和割伤(如沙粒或贝壳碎片)而不会破裂。 该研究团队使用电子显微镜在极端尺度上检查了龙虾柔性膜,发现了另一个有价值的功能:它的外壳与胶合板类似。龙虾柔性膜虽然长度仅为 0.25 毫米,却包含了 10,000 多层几丁质材料。每个单层中的几丁质纤维与其上层成 36° 角。这种特殊的复合结构使这种膜特别坚固,而其所吸收的大量的水对它强大的柔韧性有帮助。 除了新型防弹衣外,该研究团队还预测,研究龙虾的腹膜可能会为软体机器人技术和生物工程学的创新奠定基础。 研究多层结构(例如龙虾的甲壳质膜)的一种可能性是使用复合材料建模。 拓展阅读 从麻省理工学院的新闻报道中 了解有关龙虾壳研究的更多信息:“龙虾的腹部与工业用橡胶一样坚韧” 了解复合材料建模

如何在声学仿真中根据频带自动划分网格
想象一下一架优雅的三角钢琴的弧形琴盖。曲线对应于琴弦的长度,琴弦的长度对应于音高的感知。这种视觉感知体现了声学的一个重要元素:我们对音调的感知是基于对数的。这意味着声学现象涉及到较大的频率范围。

使用仿真分析由轴承不对中引起的旋转机械振动
可以使用结构分析来比较带有对中和未对中轴承的旋转机械轴上的角速度、轴向位移和轴承反力矩。

瞬态问题中的自动时步和阶数选择
这里是对时间依赖求解器登录COMSOL Multiphysics®的介绍,并深入研究离散时间步进方案、最佳时间步长和离散顺序背后的理论。

在 COMSOL® 中构建磁流体动力学多物理场模型
COMSOL Multiphysics® 软件中的模型可以从零开始构建,软件支持模拟多物理场,您可以按照自己的意愿轻松地将代表不同物理场现象的模型进行耦合。有时这可以通过使用软件的内置功能来实现,但有些情况下,需要做一些额外的工作。

多物理场仿真在法律领域的应用
仿真软件越来越多地应用于各种科学和工程领域。那么,在法律领域呢?模拟本质上是对现实的模仿或表现,在法庭上,律师试图弄清楚现实中发生的或未发生的事情及原因。

COMSOL Multiphysics® 软件 5.4 版本荣获 2018 年度产品奖
2019年6月,在COMSOL 位于马萨诸塞州伯灵顿的办公室,美国宇航局《技术简报》杂志(NASA Tech Briefs)向 COMSOL 颁发“2018 读者选择年度产品”奖项,并举行了香槟祝酒仪式。

诞辰快乐,麦克斯韦
麦克斯韦方程描述了电场和磁场的行为和互动方式,彻底改变了电磁学。你知道吗?詹姆斯-克拉克-麦克斯韦还拍摄了第一张彩色照片。

在 COMSOL® 中模拟声-结构相互作用
声固耦合(ASI)问题要求对固体中的弹性波,流体中的压力波以及两者之间的相互作用进行建模。ASI 的使用包括有声音的产生,发散,传播或接收的设备,以及用于声音的分配、隔音或消除噪声的机械系统。

使用 COMSOL Multiphysics® 优化 PID 控制器性能
想象一下,你正在公路旅行,以每小时 60 英里的速度在公路上行驶。为了保持这个速度,你决定打开巡航控制。毕竟你正在度假——为什么不让汽车替你干活呢?无论你是上坡还是下坡,汽车都会对速度变化做出反应,自动加速或减速。

机械系统的频率响应分析
阅读这篇博文,你可以详细了解阻尼机械系统,在COMSOL®中建立频率响应分析的指南,以及如何解释结果的讨论。

COMSOL Multiphysics® 中的高效参数控制和使用
任何模型都可以从适当的参数列表中受益。 了解如何通过参数节点和表单等功能更有效地控制和使用模型参数。

主题演讲视频:通过 App 改进流程理解
仿真 App 如何加强公司与其客户之间的关系?Huntsman Advanced Materials 公司的 Florian Klunker 在 COMSOL 用户年会 2018 洛桑站的主题演讲中讨论了将仿真作为一种服务提供给客户。

如何使用集总元件对机械系统建模
模拟一个大型、复杂的系统?您可能想要简化模型设置中的配置,以便更好地理解它,但是如何做呢? 进入 COMSOL Multiphysics 中的集总机械系统接口。

用强度折减法分析边坡稳定性
设计或施工质量欠佳的大坝很可能会倒塌。而岩土工程技术人员可以在大坝建成之前分析大坝的稳定性和可靠性。

光声光谱腔拓扑优化分析
在气体光声光谱学中,光和声用于检测周围环境中有害化合物的浓度。与其他光谱技术相比,光声学由于其检测方案而显示出最高的信噪比——但由于产生的声波通常太弱而不能被麦克风检测到,因此我们使用声学单元来放大信号。

参与介质中辐射传热的 4 种计算方法
离散坐标法,P1 近似,Rosseland 近似,或者比尔-朗伯定律:你应该用哪一个来分析参与介质的传热?

仿真助力设计药物输送系统
你有没有紧张过,感觉就像被一个小小的闪电击中一样?但是值得庆幸的是,这种疼痛通常会在几天之内消失。不过,遭受严重伤害的人并不是那么幸运,这种痛苦可能会持续数月之久。

使用 COMSOL® 软件仿真锂离子电池中的电极平衡
如果锂离子电池的电极平衡不正确,则电池开路电压将不会准确。在本篇博客文章中,我们将介绍电极中的物质守衡以及其是如何产生的,并使用 COMSOL Multiphysics® 软件演示了一个简易电池模型。

评估轴承不对中对转子振动的影响
从 MEMS、涡轮机到电动机,甚至船舶,各种设备中都有轴承。我们如何解释轴承的不对中(以及由此产生的转子振动)取决于其用途。

如何在 RF 模块中使用圆形端口
RF 模块中的 端口 边界条件是 COMSOL Multiphysics® 软件的附加功能,可用于发射和吸收电磁能。在本篇博客中,我们将介绍如何设置一个圆形波导端口,并检查定义端口模场的解析解。

熵捕获中的 DNA 快速分离过程模拟
在调查犯罪时,法医专家有时会使用DNA证据来识别犯罪嫌疑人。然而,DNA不仅包含识别信息,还有我们基因构成的线索。DNA 分离可以用来深入研究 DNA 链,但是传统方法很耗时。

参与介质中的辐射传热和离散坐标法
这里一份关于离散纵坐标法,正交集,以及如何模拟辐射和参与或吸收介质之间的相互作用的完整指南。

COMSOL Multiphysics® 中的网格划分是否并行运行?
网格划分是 COMSOL Multiphysics® 中建模不可或缺的一部分,它会占用大量时间和资源。 并行网格划分通过将域的网格分布在更多内核上来加快速度。