每页:
搜索

带标签的博客文章 技术内容

用阿伦尼乌斯方程描述化学反应动力学

2014年 2月 13日

无数的复杂情况和陷阱使化学模拟具有挑战性。在这篇博客中,我们对化学动力学和阿伦尼乌斯定律进行了介绍,以提供帮助。

使用投影算子分析仿真结果

2014年 2月 12日

还记得用手在墙上制作皮影戏吗?投影算子,可以用类似的方法分析你的仿真。让我们来解释一下…

使用组件耦合功能模拟温度控制器

2014年 2月 11日

了解如何在 COMSOL Multiphysics® 的热过程模拟中实现一个简单的温度控制器(反馈回路)。我们以硅晶片为例进行演示。

封闭腔体积的求解和控制

2014年 2月 3日

在 COMSOL® 软件中,有多种方法可以模拟流体与固体的相互作用。例如,可以使用完整的纳维-斯托克斯方程对压力场和流体速度场进行显式建模。尽管这种方法非常准确,但对于一些流-固耦合问题来说,它的计算成本比实际需要的要高得多。今天这篇文章,我们将介绍一种模拟包含不可压缩流体的封闭腔的方法,假设通过流体的动量和能量传递很小。 编者注: 作者撰写这篇博客的时候,COMSOL 中还没有计算封闭腔中流体载荷的功能。现在,COMSOL Multiphysics® 6.2 版本新增了封闭腔功能,可用于计算封闭腔中的流体载荷。 模拟封闭腔中的流体 我们来看一个 COMSOL 案例库中的示例:超弹性密封条的压缩模型。这个示例考虑的是压缩的软橡胶密封件的横截面。腔体中封闭的流体是空气。该示例计算了压缩力,并将密封件中考虑压缩空气影响与不考虑压缩空气影响的结果进行了比较。 软橡胶密封件的压缩模型。仿真结果显示了应力和应变。使用了不同的方法对密封件内部的空气进行模拟。 示例模型将空气视为可压缩流体,计算了随此二维示例中密封件的横截面积 A 变化的腔体内部压力 p 的变化。接下来,让我们来看看它是如何实现的。将腔体内的空气视为绝热压缩下的理想气体,则压力-密度关系为: \frac{p} {p0}=\left(\frac{\rho} {\rho0} \right)^\gamma=\left(\frac{A0} {A}\right)^\gamma   所以,要计算压力的变化,只需要知道面积的变化就可以了。假设未压缩密封件的面积和压力,以及比热率 \gamma均已知,如何计算横截面积呢?该面积由一个我们甚至不想考虑在模型中的区域来描述。使用高斯定理将面积积分转换为边界积分: A=\int\Omega 1 d\Omega = \int\Omega \left( \nabla \cdot \left[ \begin {array} {c} x \ 0 \end {array} \right]\right) d\Omega = \oint x nx d\Gamma   其中,x 是变形的密封件构型的 x 坐标,n_x 是边界的向外法向量的 x 分量,也在变形配置中,由此给定密封件的封闭区域。这是通过一个定义在封闭体积的完整内部边界上,名为 AreaInt 的积分耦合算子 完成的。变形区域由在“完整模型”上定义的变量 EnclosedArea 定义。 在密封件的内边界上定义面积积分。 分别定义封闭面积和内部压力的变量的定义。必须使用负号来计算面积,因为固体的法线指向腔体。 计算出的变形面积用于确定密封件变形时内部压力的变化。计算得出的压差作为一个载荷施加到密封件内部。要查看上述方法的完整操作,请查看超弹性密封条模型文档。 考虑不可压缩流体 上述方法假设流体是可压缩的,并且密封件的内部压力与面积变化呈函数关系。但如果流体是不可压缩的呢?假设考虑的不是包含可压缩空气的密封件,而是一个充满水的气囊,其中水几乎是不可压缩的。那么,随着结构的变形,封闭的面积不能改变,上述方法就行不通了。因此,我们需要一个替代方案。 我们将 全局方程 功能添加到固体力学接口,通过在这个模型中引入一个额外的方程来求解流体内的压力,使体积不会发生变化。我们来看看这个接口: 引入的全局方程的设置。需要启用高级物理选项才能查看此功能。 上面的屏幕截图显示了用于额外变量 压力 的 全局方程 设置。此方程成立的条件是变量 封闭区域 等于初始面积 123.63 […]

在 COMSOL 中使用广义拉伸耦合算子:动态探测

2014年 1月 28日

请看一个激光加热的例子,热源(激光)在移动,几何体也在移动。如何使用广义拉伸耦合算子在几何体的某一点上探测解?

求解代数场方程

2014年 1月 14日

COMSOL Multiphysics® 通常用于求解 PDE,ODE 和初始值问题。但是,您是否知道它也可求以解决代数方程,甚至超越方程?

建立子模型:如何分析大型模型中的局部效应

2014年 1月 1日

你有没有碰到过对一个具有大量边界条件的特别大的结构进行建模?了解如何使用子模型,这是在COMSOL Multiphysics®中分析大型模型局部效应的一种建模技术。

由二维轴对称电磁模型创建可视化三维绘图

2013年 12月 31日

今天,我们将介绍在 COMSOL 软件中如何绘制矢量场的三维视图,这些矢量场由 RF 模块和波动光学模块中的电磁波、频域 接口的二维轴对称公式计算获得。 由二维轴对称解生成三维绘图 回想一下,COMSOL 软件中的时谐分析 假设场分量根据 e^{j\omega t} 在时间上振荡,其中 \omega 是角频率。在二维轴对称公式中,电场的角度依赖性由 e^{-j m \phi} 计算,其中 m 是用户指定的整数。由时间和角度的相关性 e^{j(\omega t-m \phi)},可知电场围绕 Z 轴 旋转。我们的目标是由具有这种角度依赖性的二维轴对称解创建三维绘图。 使用二维旋转数据集创建三维绘图 在计算出二维轴对称问题的解之后,COMSOL Multiphysics 会自动生成一个名为“二维旋转”的位于“数据集”节点下的二维数据集,如下图所示。 旋转数据集可用于绘制三维视图。由于我们绘制的是三维绘图,因此将完成一次从 0° 到 360° 的完整旋转。“二维旋转1”的设置如下所示。可以看到,在 “旋转层”下,起始角度被设置为 0,旋转角度被设置为 360。 二维轴对称计算中的平面坐标为 (r,z)。由于角度 \phi 不属于计算域,因此没有被定义。不过,可以通过选中“定义变量”旁的复选框将它添加为三维数据集中的坐标。“二维旋转1”数据集中的角度变量名被设置为“rev1phi”,并可用于下文中的绘图和导出值的表达式中。 如下图所示,考虑一个带矩形截面的轴对称谐振腔。在二维轴对称公式中仅模拟矩形截面。 我们可以使用特征频率研究计算谐振模式。假设我们想绘制 m = 1 模式的场量。下图左侧为在 rz 平面 绘制出的电场大小。我们还可以在将空腔一分为二的表面上绘制电场的大小,这是使用 xy 平面 上的“emw.normE”三维切面图绘制的,平面数被设为 1。右下图中绘制了电场的大小。由于场是围绕 Z 轴 旋转的行波,因此它是轴对称的,这也是因为它遵循 | e^{j(\omega t – m \phi)} | = 1。 绘制电场的径向分量 现在,我们来绘制空腔平面内电场径向分量的实部。具体来说,我们将绘制 t=0 时的 Re { E_r(r,z) \, e^{j(\omega t-m \phi)} },其中 […]


浏览 COMSOL 博客