每页:
搜索

MEMS 与纳米技术 博客文章

开发用于按需DNA合成的硅MEMS芯片

2020年 1月 21日

体细胞基因组编辑逐渐表现出能够治疗多种遗传疾病的能力。随着功能强大的基因组编辑工具 CRISPR-Cas9 的不断发展,人们对 DNA 合成技术的需求也越来越多。一家总部位于英国的初创公司正在开发一个平台,用于高度平行、精确以及可扩展的 DNA 合成,这将大大拓宽合成生物学的应用前景。 DNA 研究的新领域 传统的 DNA 合成技术是通过化学构建一串碱基,以形成一条单链的一个片段,然后将这些片段连接在一起,形成双链DNA。这种方法造价昂贵且非常耗时,这就限制了合成生物学的应用前景。一个可以合成整个基因序列的 DNA 平台将会改变每个实验室中 DNA 合成的格局。现今,总部位于英国剑桥的初创公司 Evonetix 正在开发一种芯片系统,以实现这一目标。 Evonetix 正在开发的平台上包含有多个反应位点的硅芯片,每个反应位点都可以并行合成一条不同的 DNA 链。各个位点都有一层金,上面会发生生化反应。同时也有一些保护区域,这些保护区域将位点与之间的被动区域热隔离。 在芯片实验室里做的晶片硅上的单个反应位点。图片由 Evonetix 提供。 热控制是芯片最重要的方面之一。可以通过热控制来加速或减速芯片上各个位置的反应,就像电灯开关一样打开或关闭这些位置。热控制还可以精确且独立地控制反应位点处流体体积的温度,这种控制可以创建 “虚拟热井” ,从而消除反应位点之间的物理屏障,并允许试剂可以同时流过数千个位置。这样,当含化学试剂的液体流过这些位点时,取决于温度的反应就可以以高度并行的格式进行或者关闭。 该芯片的另一个方面是其专有的错误检测方法,这种方法可以提高良率。反应位点上生长的 DNA 序列会自动纯化以消除错误,然后再将它们组合成更长的高保真基因序列。 设计目标 为了使硅芯片可以尽可能有效地合成 DNA,Evonetix 团队想到需要优化其几何形状和材料。他们对该芯片有三个主要设计目标: 反应位点处温度均匀 反应位点上单位功率的高温升速率 流体流动过程中稳定的温度分布 首先,反应位点处保证其温度均匀很重要,因为温度可以精确控制反应。Evonetix 物理负责人 Andrew Ferguson 说:“化学反应是随着温度变化而开启的,我们希望可以精确地控制反应速率。” 其次,反应位点上单位功率的高温升速率可以使芯片的总功率保持在较低的水平。最后,芯片上稳定的温度分布确保了反应可以在流体流动条件下发生。 在 COMSOL Multiphysics® 中为硅 MEMS 芯片建模 Evonetix 团队使用 COMSOL Multiphysics® 软件在其硅芯片设计上模拟 DNA 合成。Evonetix的高级工程师 Vijay Narayan 说,“我很喜欢 COMSOL Multiphysics 的用户界面。它可以让我们专注于物理学,同时确保方程的数值结果能得到很好的后处理。”他们使用 COMSOL Multiphysics 中的内置材料以及来自文献的外部材料数据,建立了具有真实材料参数的模型。 首先,该团队使用 COMSOL Multiphysics 构建芯片的单个单元(包括反应部位和加热器)的几何形状,以满足上述三个设计要求。该 ECAD导入模块 使他们能够轻松地将他们的设计从 GDS(CAD 文件格式)导入到 COMSOL Multiphysics 软件中。Narayan说:“系统的设计,尤其是对加热器的设计,可以非常精确,并且具有非常严格的设计规则,同时 ECAD 导入模块提供了更多的灵活性。” 这一功能也使设计团队能够在原型制作阶段直接向制造商提供设计图样。 包括一个反应位点的几何模型图。图片由 Evonetix 提供。 为了分析系统的稳态和瞬态热响应,研究小组使用了传热模块。他们通过使用 电磁加热 接口,让电流流经加热器来评估系统的温度控制能力。为了扩展热分析,该团队通过添加 层流 和 非等温流 多物理场耦合来描述流体流动。 […]

动力学集体模型中的流体动力学热输运

2019年 2月 28日

巴塞罗那自治大学(Universitat Autònoma de Barcelona, UAB)的F. Xavier Alvarez讨论了借助COMSOL Multiphysics® 在纳米尺度上模拟传热,从而更好地理解传热过程。

萨格纳克干涉仪和环形激光陀螺仪的射线光学仿真

2018年 4月 20日

您曾经在旋转餐厅中随着缓慢地旋转享受美食吗?相似的概念可以帮助我们理解萨格纳克干涉仪和环形激光陀螺仪。

基于多物理场仿真的可调谐滤波器高保真建模

2018年 4月 3日

由于高速通信是无线系统发展的必然趋势,因此,对更高的数据速率、更高的频率、更大的频谱和更宽的频宽的需求都增加了。当处理宽带时,可能需要在无线通信系统中部署多个设备,以滤除多余的噪声和干扰信号,提高信噪比,并提高灵敏度。而单个可调谐滤波器便可替代这些设备,从而减少系统的空间大小和重量,并降低多个组件的制造成本。

MEMS 微镜的粘滞阻尼和热阻尼分析

2018年 1月 29日

微镜有两个主要的优点:低功耗和低制造成本。因此,许多行业将微镜广泛用于 MEMS 应用。为了在设计微镜时节省时间和成本,工程师可以通过 COMSOL Multiphysics® 软件准确计算热阻尼和粘滞阻尼,并分析器件的性能。

基于 MEMS 技术的应变计仿真设计分析

2018年 1月 19日

在土木工程和生物医学领域,应变计用于测量不同物体所承受的形变。通常使用箔式应变计,但灵敏度较低。基于 MEMS 技术的应变计,如双端音叉(double-ended tuning fork,DETF)应变计,可以提供更好的性能。研究人员使用 COMSOL Multiphysics® 软件对一种新型 DETF 应变计的设计进行优化,并将结果与理论模型进行了比较。

用 COMSOL Multiphysics® 分析开尔文探针设计

2017年 10月 4日

开尔文探针提供了一种无损、无触点的方法来测量各种材料组合的功函数差。这些探针可具有多种设计,包括不同的尖端形状、长度和半径。为了确定最佳设计,同时最大限度地减少测试,研究人员使用 COMSOL Multiphysics® 软件做了相关研究……

如何分析随温度变化的特征频率

2017年 5月 22日

在某些应用中,特别是在 MEMS 领域,研究器件特征频率对温度变化的灵敏度非常重要。在本篇博客文章中,我们介绍如何使用 COMSOL Multiphysics® 版本来执行此类研究。我们还探讨了应力软化,几何变化和材料属性的温度依存性等效应。


第一页
上一页
1–8 of 20
浏览 COMSOL 博客