每页:
搜索

声学与振动 博客文章

通过仿真微调压电换能器设计

2019年 4月 5日

设计压电换能器本质上是一个多物理问题。请在此查看分析COMSOL®软件中此类设备的示例。

建立逼真的声悬浮器模型对抗重力

2019年 3月 27日

这不仅仅是科幻小说:物体真的可以漂浮。实现这一点的一种方法是利用声波在半空中提升和悬浮粒子。仿真可以拓宽这项技术的使用范围。

如何在封闭空间中建立基源模型

2019年 1月 17日

故事始于阿基米德正在处理的一桩金皇冠诈骗案。当他洗澡的时候突然有了灵感:将一个物体浸入水中,所排出的水量与该物体的体积相同,这样他就可以查出掺有杂质的黄金了。阿基米德高兴地大喊:“找到了(eureka)!”但是会有人会听到这著名的呐喊吗?通过仿真,我们可以评估共振和混响封闭空间(如浴室)的声学效果,及其对基源的响应。

如何建立兼具发射器与接收器功能的压电器件模型

2018年 12月 20日

某些类型的换能器可以同时充当发射器与接收器。我们演示了如何使用两个特征来模拟此类压电器件。

模拟喇叭中的非线性声传播

2018年 12月 4日

当对声学器件建模时,虽然总存在非线性因素,但通常只考虑线性传播就足够了。然而,当在设计中信号幅度达到较高程度时,非线性效应就会显得尤为重要。工程师可以利用 COMSOL Multiphysics® 软件中的非线性声学(Westervelt) 特性,在仿真中加入非线性效应,如指数曲线形喇叭示例所示。

透视固体:光声效应的发现与应用

2018年 8月 30日

1880 年,亚历山大·格拉汉姆·贝尔给他的父亲写了一封信,信中说:“我听到光线在清晰地交谈,我听到光线的笑声、咳嗽声和歌唱声!”他是在谈论自己的最新发明——光线电话机,这也是他生前认为自己“最伟大的发明”。光线电话机并未彻底改变成像领域,但贝尔在研究过程中却有一个意外收获…

克拉尼板如何让你“看见”声音?

2018年 8月 17日

“如果你想知道宇宙的秘密,就用能量、频率与振动来思考。”— 尼古拉·特斯拉 我们能“看见”声音吗?就算不能直接看到,但我们离这个目标已经不远了。通过改变看问题的角度,我们可以了解声学现象的本质。观察声学现象的一种方法是研究称为克拉尼板 的固体介质中的驻波。这是一种特殊技术,可以在板上产生图形,从而揭示声音的物理性质。

使用贝塞尔面板基准模型分析扬声器阵列

2018年 7月 23日

扬声器阵列的主要设计目的是实现比单个扬声器更广的声音覆盖范围。同时,阵列的辐射方向图必须与单个扬声器的辐射方向图毫无区别。使多个扬声器产生呈放射状分布的声音的一种方法是使用贝塞尔面板。工程技术人员通过分析贝塞尔面板系统的基准模型,可以优化扬声器阵列和其他声学系统的设计。


浏览 COMSOL 博客