每页:
搜索

带标签的博客文章 非线性结构材料模块

使用 COMSOL® 探索硬度数的不明确性

2020年 9月 22日

今天的客座博主来自 Plastometrex 公司和 Double Precision 咨询公司(COMSOL 的认证顾问之一)的 James Dean。他讨论了如何使用有限元建模(FEM)方法了解硬度值,并介绍了 Plastometrex 公司如何利用仿真 App 和 COMSOL Compiler™ 开发出一种可以从压痕测试数据中获得应力-应变曲线的全新产品…… 测试硬度的方法有各种各样,并已经被使用了数十年,它们执行快速、简便。由于被测材料的体积很小,因此可以在材料表面上表征硬度值、探索局部变化,并获得薄表面层和涂层的数值。然而,硬度不是一个明确定义的属性。从给定样品中获得的硬度数随测试类型的不同而变化,并且对于同一测试在不同条件下也是如此。经常进行此类测试的人应该都清楚,从具有不同屈服应力和加工硬化特性的材料中可以获得相似的硬度值。今天,我们借助 COMSOL Multiphysics® 多物理场软件对这种现象进行演示和说明。 硬度数的概念(通过压痕获得) 硬度是材料抵抗塑性变形的度量。通过硬度不仅可以了解屈服应力,还可以了解之后的加工硬化特性,这是很有意思的。硬度数提供了一个将两者结合起来的标准,尽管不是以明确的方式。由于硬度代表的含义具有一定的复杂性,因此它不是一个简单的、定义明确的参数,并且不同的硬度测量方案测出的数值都不同,这并不奇怪。但是,所有这些方案的原理都是相同的,即将指定的载荷施加到硬度计压头上,压头会压入样品中,从而导致塑性变形并留下永久凹陷。硬度值可以通过几种方法获得,但在大多数情况下,是通过测量侧面凹痕的横向尺寸(直径)或穿透深度来实现的。 硬度通常被定义为力(载荷)除以压头与试样之间的接触面积。该比率具有应力维度,尽管通常将其简单地引用为一个数字(单位为 kgf mm-2)。无论如何,该应力水平与材料的应力-应变曲线,甚至与样品中产生的应力场都没有简单的关系。样品的不同区域将经受不同的塑性应变水平,范围从零(在塑性区域的边缘)到百分之几十(接近压头)不等。即使最大应变水平也不能很好地定义,因为它取决于压头的形状、施加的载荷和塑性特性。尽管材料的应力-应变关系确实可以确定压痕尺寸(对于给定的压头形状和负载),但从后者推断出前者并非易事,并且在常规硬度测试中也从没有尝试过这样做。 布氏和维氏测试 布氏测试于 1900 年被开发,通过使用 3000kg(〜30 kN)的载荷将直径为 10mm 的硬球压入样品。布氏硬度值由下式给出 (1) HB=\frac{2F}{\pi D[D-\sqrt{(D^2-d^2)]}} 其中,F 是施加的载荷(以 kgf 为单位),D(毫米)是压头的直径,而 d(毫米)是压痕的直径(在投影图中)。该公式是以载荷除以接触面积得到硬度值。这类公式基于简单的几何方法,样品的弹性恢复被忽略。此外,在实践中,凹痕周围可能会出现“堆积”或“沉入”现象,从而使真实的接触面积与从理想几何形状获得的实际接触面积不同(并且也难以精确测量直径)。 维氏硬度测试是由Smith和Sandland(Vickers Ltd.)于 1924 年开发的,其主要目标是降低早期试验的负荷要求。将压头从相对较大的球体更改为较小的尖锐形状,可以使用较低的载荷(可以用自重产生)。机器内部通常会提供多个砝码,根据型号的不同,其重量从 1 公斤以下到 50 公斤左右不等。(金刚石)压头是一个直角金字塔形,底部为正方形,相对面之间的夹角为 136°。(锋利的)边缘会促进穿透,并且它们在凹痕中产生的线条有助于测量其大小。 压痕直径 d 通过投影测量(与布氏测试一样)。HV 的值(载荷除以接触面积)由下式给出 (2) Hv=\frac{2Fsin(\frac{136} {2})}{d^2} \approx 1.854\frac{F}{d^2} 因此,类似于布氏测试的简单计算,可以通过测量d的值来获得硬度值。与布氏测试一样,样品的弹性回复以及压痕周围的“堆积”或“沉入”现象也被忽略了。 维氏测试使用广泛。实际上,HV是最常用的硬度值,部分原因是它可以改变载荷。它可以应用于各种金属、薄截面、表面层等。图1显示了一组典型硬度数值(参考资料1),包括各种合金。这些数值是通过对特定样品的压痕尺寸进行仔细测量而获得的。这些数据有助于说明不同金属硬度的典型值,尽管确切的数值应该更加谨慎对待。 图1 一系列合金的维氏硬度数(参考文献1)。 通过将硬度数乘以 g(9.81),可以得出作用在接触面积上的应力(单位 MPa)。该应力与应力-应变曲线没有简单的对应关系。但是,如果忽略加工硬化,则硬度应与屈服应力成比例。对于维氏测试,该关系通常写为 (3) \sigmaY \approx \frac{HV}{3} 这些表达式通常用于从硬度测量中获得屈服应力。 使用有限元法获得2种合金的硬度值 通过使用有限元建模模拟压痕过程,可以预测硬度数的值。通过对特定合金(具有定义的应力-应变曲线)进行特定类型的测试来获得硬度数。2 种测试金属为 Ti-6Al-4V(318)和 Hadfield 锰(Mangalloy)钢。这 2 种合金塑性变形的真应力-应变曲线如图2所示。可以看出,两者明显不同,318具有高屈服应力,但加工硬化有限;而 Mangalloy […]

多物理场仿真助力抗击全球疫情

2020年 8月 13日

无创呼吸机(Noninvasive ventilation,NIV)是一种医疗救助装置,它通过持续气道正压通气技术(Continuous positive airway pressure,CPAP)为呼吸困难的患者提供空气。

弹塑性金属条颈缩基准模型评估

2019年 3月 18日

当对具有特定几何结构的可延展材料样品进行拉伸试验时,会发生一种称为颈缩的现象。在一定载荷下,变形不再均匀,并形成局部“颈缩”。工程技术人员可以使用仿真来预测何时出现这种现象。

动脉自膨胀式支架的仿真与建模

2019年 2月 6日

人工支架是治疗冠心病的一种常用方法。人工支架可以增加流向心脏的血液流动,但也会带来并发症,因为患者心脏周围的动脉具有不规则的解剖结构。自膨胀式支架是人工支架的一种,它能够贴合血管,并随着血管的变化而变化。

使用人眼光力学模型研究老花眼

2018年 10月 24日

在例行检查过程中,眼科护理专业人员会检查常见的屈光不正症状,如近视、远视和散光。随着患者年龄的增长,医生还会检查老花眼,这是一种眼调节能力减弱的现象,会导致近视力长期完全丧失。视觉调节过程非常复杂,很难获得改进老视诊断和治疗所需的有用眼睛特性。为了解决晶状体折射率的测量问题,研究人员利用仿真开发了一种逆向工程技术。

如何模拟超弹性材料的压缩

2018年 9月 5日

为了表征超弹性材料,需要进行各种测试获取实验数据,包括承受单轴拉伸和压缩、双轴拉伸和压缩以及扭转测试。今天,我们向大家介绍如何使用通过单轴和双轴测试获得的拉伸和压缩测试数据,模拟由弹性泡沫材料制成的球体的压缩。

材料科学的重点议题:永不忘本的形状记忆合金

2018年 5月 11日

形状记忆合金(shape memory alloy,简称 SMA)是有“记忆”的合金:它们受压力或温度变化而发生变形后,能够恢复到初始形状。SMA 有着广泛的应用,包括冶金、制造、生物医学以及儿童工艺品,其应用范围不断扩展到各个领域。

利用多孔塑性模型模拟粉末压制

2017年 6月 12日

在很多制造产业中,粉末压实是一项应用广泛的重要技术。您可以使用多孔塑性模型来分析并改进粉末压实工艺。


第一页
上一页
1–8 of 8
下一页
最后一页
浏览 COMSOL 博客