每页:
搜索

带标签的博客文章 电化学模块

电化学阻抗谱:实验、模型和仿真 App

2017年 2月 9日

电化学阻抗谱是一种通用的实验技术,可提供有关电化学电池的各种物理和化学现象的信息。通过对相关物理过程进行建模,我们可以建设性地解释实验结果,并评估控制电池的物理量的大小。随后我们可以将模型转换成仿真 App,让更多的研究人员和工程技术人员可以进行电化学建模。本文中,我们将探讨三种不同的电化学阻抗谱分析方法:实验、模型和仿真 App。

模拟电分析:循环伏安法

2013年 5月 27日

如果你不是电化学家,很有可能从未接触过循环伏安法。但是,当你去看任何一本电化学期刊、会议论文集或者电化学传感器制造商公司的网站时,会发现在靠前的位置总能看到一个独特的“双峰”图。 为什么要使用循环伏安法? 这个“双峰图”看起来像这样: 这是一个循环伏安图,绘制了电化学电池中电流随施加电压的变化而变化的曲线。通过在一定范围内扫描往返变化的电压,驱动电极的电化学反应朝不同方向发展: 循环伏安法是一种应用非常广泛的技术,用于检测电极与电解质(如盐溶液)界面的物理和化学性质。电活性表面在所有电化学装置中都很常见,包括电池和燃料电池等常见的能量提取装置,以及如用于监测糖尿病患者血糖浓度的电化学类传感器。然而,人们仍然没有完全理解电极-电解质界面的化学性质,这是一个活跃的学术研究领域。 伏安法对设备验证和设计很有价值,因为一次扫描就包含了关于系统的化学和物理行为的大量信息。此外,伏安法还是传感器运行的基本工作模式,因为在设计良好的系统中,测得的电流与分析物的浓度成线性关系。对电极材料进行化学修饰使得伏安法可专门用于检测混合物中的某种生物化合物或有毒气体,由于可以使用丝网印刷电极技术实现“一次性电化学”应用,因此它成为了一种成本低廉的先进技术。 对于设计和研究而言,伏安法的最大优势在于其提供信息的多样性。它阐明了电极表面的电解速率与反应化学物质通过扩散到达该表面的传输速率之间的竞争关系,还能提供有关溶液中化学反应的机理和速率的宝贵信息。在不同的扫描速率下使用伏安法,改变了电压随时间的变化速率,我们可以观察到不同系统时间尺度下不同的物理现象。 为什么模拟伏安法? 尽管伏安法非常重要,但却是一种理解起来有些困难的技术。系统中所有真实的物理效应都被归结到一些非常晦涩的电流-电压曲线中,虽然经验丰富的电分析化学家可以直观地从伏安图中“看到”化学反应,但要从实验中获得定量信息,就必须将伏安法与理论预测结果进行比较。由于电化学动力学通常是非线性的,而伏安法又是一个瞬态问题,理论上不太可能获得解析解(极少数特殊情况除外),因此必须进行计算机模拟。 保持模型的简洁性 COMSOL 的电化学模块包括一个电分析 接口,专为模拟伏安法等电分析技术而设计。其中假定存在大量的支持电解质,例如,人为地添加到电化学电池的电解质中的惰性盐(如氯化钾),用于增加其导电性。支持电解质可减轻电场,其优势在于可以简化实验分析和基础理论。我们假定只有扩散对化学物质的传递起作用,因为溶液没有搅拌,而且时间尺度足够短,溶液中的自然对流不重要。在这些条件下,化学物质传递方程是线性的,因此更容易求解。 在伏安法实验的典型持续时间内,物质扩散的尺度非常短,通常远小于 1mm。对于半径超过 1mm、形状像圆盘的传统“大电极”,可以准确地假设扩散只在电极表面的法线方向比较显著,电极边缘的影响可以忽略,因此整个电极表面的反应和传递是均匀的。因此,伏安分析可以简化为一维瞬态问题。 设置循环伏安模型 为便于定义瞬态外加电压及其对电解反应速率的影响,电分析 接口包含一个预置的“电极表面”功能,可直接设置伏安法的电位窗口和扫描速率,它会自动实现电极动力学的 Butler-Volmer 方程,但与 COMSOL Multiphysics 中的其他很多功能一样,用户也可以自定义动力学表达式。然后,相关的循环伏安法研究会使用适当的数值方法对瞬态扩散方程进行积分,自动求解相应的瞬态问题。使用“参数扫描”功能,我们可以在一次计算中研究一系列扫描速率。 查看结果 从上图中,我们可以看到在 1mV/s 到 1V/s 四种连续扫描速率下记录的仿真预测的 4 个伏安图,这些预测对应的实验持续时间从近半小时到一秒多一点。可以看到电流随着扫描速率的增加而增加,但伏安图具有相同的“双峰”。后者可以解释为,刚开始时电压无法驱动反应物进行正向反应,因此电流可以忽略不计。随着电压升高,反应加速,因此电流增大。但一段时间后,电极表面的反应会耗尽反应物浓度。这时,决定反应速率的过程发生变化,致使电流受反应物向表面扩散的控制,从而再次下降。反向反应也有类似的过程,当电压扫描回到起点时,生成物会重新转化为原始反应物。 电流密度随扫描速度增加的原因是,扫描速度越快,扩散层形成的距离越短。由于反应物浓度在较短的距离上快速变化为零,扩散通量较大,因此电流也较大。实际上,峰值电流应与扫描速率的平方根成比例:检查这个关系是对实验数据进行验证的常用方法,用于检查测量结果是否受到扩散以外的物理效应的干扰。 在设计传感器时,我们总是希望最大限度地提高电流,从而最大限度地提高灵敏度,因此这种分析有助于电化学电池和化学环境的实际设计。通过比较仿真预测的伏安图和实验测量结果,我们可以确定材料属性和其他可能未知的系统参数,如扩散系数和反应速率。 请尝试对上述动画进行比较,了解电流与不断变化的浓度曲线之间的关系。请注意电极表面(x = 0)的反应物浓度是如何随着电流的增加而趋于零的,一旦电极表面浓度为零,浓度梯度在扩散作用下降低,电流也随之降低。在第二次扫描中,电流被反向反应逆转,电极表面的浓度又恢复到其主体值。 进一步研究 由于电分析 接口将电分析仿真嵌入到 COMSOL Multiphysics 环境(一个功能强大、灵活的有限元方法用户界面)中,因此可以直接进行扩展。通过添加反应域条件,可以将电化学生成物的后续化学反应包括在内;我们可以建立同一过程的二维或三维模型,研究真实系统几何结构中的扩散情况;还可以进行多个伏安循环,或应用非标准电压波形;将反应物对流与流体流动进行耦合,可以研究流体动力电化学。我们还可以通过同一用户界面考虑一系列相关技术,如电位阶跃计时电流法和电化学阻抗谱法。 提示:查看 COMSOL 案例库中的电极循环伏安法模型。


9–10 of 10
下一页
最后一页
浏览 COMSOL 博客