每页:
搜索

通用 博客文章

使用广义拉伸算子模拟周期性结构

2015年 8月 11日

在建立多物理场模型的过程中,我们经常会遇到这样的情况:一个物理场的解是周期性的,或者非常接近周期性的,而其他感兴趣的物理场的解是非周期性的。如果我们提前知道这一点,就有可能利用这种周期性来减少计算。这篇博客,我们将演示如何利用COMSOL Multiphysics中的广义拉伸组件耦合来实现这一目标。 在微流体设备的多物理场仿真中利用周期性 首先我们来了解一下微流体设备,如下图所示。这类设备内具有很多微小的通道,其中充满了携带不同化学物质的流体。设计这些设备的一个共同目标就是要在一个小表面区域内实现最佳混合,因此通常会被设计为蛇形通道。 一个典型的微流体设备。图片源自 IX-factory STK 。在CC BY-SA 3.0下获得许可,通过Wikimedia Commons.共享。 下图是微流体设备的示意图,包括两个流体入口,两种流体中的溶剂(水)相同但溶质不同。在出口处,我们希望这些物质能够充分混合。为了模拟这种情况,需要求解流动的纳维-斯托克斯方程。计算出的流场可以作为控制物质浓度的对流-扩散方程的输入。COMSOL案例下载页面中的微混合器教程就是这种模型的一个示例。 现在,如果需要的话,我们可以对上图所示的整个装置进行建模。但是,如果我们忽略入口和出口附近的结构,就可以合理地假设通道弯曲处的流动在基本单元之间是相同的。因此,可以通过只求解一个单元内的流体流动,并在对流扩散问题的整个建模域中对该流动解进行建模,从而大大简化模型。 微混合器的示意图,描述了重复的单元以及入口和出口区域。 对于这样一个基本单元模型,将通道的壁设置为壁,无滑移条件。使用周期性流动条件设置速度,以使入口和出口边界处的速度是相同的,这样我们就能指定基本单元上的压降。使用单个点上的压力约束来测量固定压力场。本例中的流体是水,在室温和压力下定义其属性。绘制这个基本单元的流动解,如下图所示。 周期性的建模域和流体流动的解。 现在我们得到基本单元的解,就可以使用广义拉伸组件耦合,将解从这个基本单元映射到重复的域上,从而能够定义整个蛇形截面上的流场。 使用广义拉伸组件耦合模仿和重复使用解 COMSOL软件模型树中的组件>定义>组件耦合提供了广义拉伸功能。该功能的设置如下图所示。为了将解从一个域映射到其他域,这些域沿x轴偏移了一个已知的位移,目标映射使用表达式“x-Disp”作为x表达式。因此,原域中的每一个点都会沿着正x方向被指定的位移所映射。由于在y方向上没有位移,y表达式被设置为默认的“y”。 如下图所示,变量Disp是在三个域中的每一个域中单独定义的。因此,只需要一个算子就可以将速度场映射到所有域中。在原域内,使用的是零位移。 广义拉伸算子的设置和三个域中的变量定义。 定义了广义拉伸算子后,我们就可以在整个模型中使用它。在这个例子中,该算子通过稀物质传递接口定义速度场(如下图所示)。速度场由u和v给出,分别是x方向和y方向的流体速度。现在这个速度场的分量已经通过广义拉伸算子genext1(u)和genext1(v),在所有的重复域中分别被定义。 广义拉伸算子用于定义所有周期域的速度场。 现在,整个建模域的速度场已经确定,通过流入边界条件确定入口处的物质浓度。在入口边界上施加一个变化的物质浓度。在另一端施加一个出口边界条件。 虽然严格来说没有必要这样做,但是网格会从一个域中复制到其他所有域中,用于求解流体流动。复制域网格功能可以精确地复制网格,从而避免网格之间流动解的任何插值。 该模型将分两步进行求解,首先求解层流物理场接口,然后求解稀物质传递接口。这样做是合理的,因为它假定流场与物质浓度无关。浓度和映射的速度场的分析结果,如下图所示。 求解了所有重复域中的物质浓度(用颜色表示)。在一个域中求解了箭头所示的周期性速度场,并映射到其他域中。 结束语 我们讨论了如何使用广义拉伸组件耦合来设置周期性解的线性阵列,作为多物理场分析的一部分。对于圆形周期性,必须在目标映射中使用旋转矩阵,而不是线性偏移。在之前的博客中,我们详细介绍了定义这种旋转矩阵的例子。 文中应用的方法适用于其它任意物理场需要利用空间重复解的情况。在您的多物理场仿真中,会在哪里使用呢?

在 COMSOL Multiphysics 中对设计敏感性进行计算

2015年 8月 5日

COMSOL Multiphysics 中有一个十分实用却常常被人忽略的功能——计算设计敏感性。假设您用有限元模型计算某个目标函数,那么不论模型输入如何变化,您都能仅仅借助 COMSOL Multiphysics 软件包的核心功能轻松地计算出该目标函数的敏感性。在这篇博客文章中,我们将向您展示这项功能的使用方法。

借助虚构解方法验证仿真

2015年 7月 27日

我们该如何检验仿真工具是否正确工作?方法之一就是虚构解方法。该方法涉及假设一个解,获取与假设一致的源项及其他附加条件,使用上述条件作为模拟工具的输入项来求解问题,以及对比结果与假设解。该方法使用简单且用途广泛。例如,桑迪亚国家实验室的研究人员将该方法与一些内部代码一同使用。

MTC 借助仿真 App 优化 3D 打印

2015年 7月 23日

3D 打印已经成为一项深受很多行业欢迎的制造技术。人们对这种制造方法的需求不断增长,也进一步促进了对此工艺的仿真研究。制造技术中心 (MTC) 的工程师们发现他们的客户对定型金属沉积这种增材制造技术很感兴趣。团队特意为此开发了一个仿真 App,不仅能更好地满足客户的需求,还能更高效地向他们交付有效的仿真结果。

用上一个解算子追踪材料损伤情况

2015年 7月 21日

我们演示了如何使用上一个解算子在模拟中跟踪材料损坏,使用了一个激光加热晶片上薄层的“烤掉”示例。

利用仿真 App 研究锂离子电池的阻抗

2015年 7月 14日

电池在工作时通常会经历很多过程,而这些过程涉及了非常多的参数。如何深入探究电池内部的运行和反应过程?一种便捷的途径是分析电池的阻抗。借助“案例库”中的“锂离子电池阻抗”演示 App,我们可以轻而易举地对特定锂离子电池设计中的阻抗进行分析。此外,仿真 App 还能实现电池系统的参数化,在后续步骤中,参数化设置将有助于我们创建精确的瞬态模型。

创建可用于优化搅拌器设计的 App 简介

2015年 7月 6日

COMSOL Multiphysics® 软件 5.0 版本为用户带来了仿真 App 创建功能,用户可以选择从零开始创建,或者基于“案例库”的演示 App 进行创建。今天,我们将介绍一款可用于分析与优化搅拌器设计,及其针对特定流体的操作状况的 App 。示例 App 对搅拌釜式反应器进行了建模与仿真,这种装置常用于精细化工、制药、食品和消费品行业的反应器。

借助组件耦合对局部数据进行后处理

2015年 7月 2日

组件耦合算子是 COMSOL Multiphysics 提供的一组实用工具,可用于导出数值、创建新坐标系,以及为同一模型中的不同组件创建链接。在本文中,我们将探讨另一种可能性:使用名为广义拉伸 组件耦合算子提取局部计算数据,并进行有效的后处理。


浏览 COMSOL 博客