求解非线性稳态有限元问题

Walter Frei | 2013年 11月 19日

本篇博客中,我们将简要介绍求解非线性稳态有限元问题的算法,并通过一个非常简单的一维有限元问题来演示这些内容,即我们在“求解线性稳态有限元模型”博客中所讨论的那个问题。


Categories

Walter Frei | 2013年 11月 11日

本篇博客中,我们将向您介绍使用 COMSOL 求解任何有限元问题时,其中所用的两类线性方程组的求解算法。这些信息与理解求解器的内部工作原理,以及内存使用如何随问题大小变化等相关。


Categories

Walter Frei | 2013年 10月 29日

阅读之前的一篇博客 “线性静态问题的网格剖分注意事项”,我们发现,有限元模型的解将能在网格细化的限度内收敛至真实解。不仅如此,我们还了解到,在误差较高的区域,可以通过自适应网格细化生成包含更小单元的网格,而不是简单地在整个模型内都使用较小的网格单元。在这篇博客中,我们将讨论有限元建模过程中一些常见的由模型奇异性造成的错误。


Walter Frei | 2013年 10月 15日

本篇博客是求解器系列的首篇博客,将介绍用于求解所有线性稳态有限元问题的算法。虽然我们在博客中基于一维有限元问题进行介绍,但所讲解的内容具有普适性,能帮助您理解博客系列中接下来将介绍的更加复杂的非线性多物理场的求解技巧。


Categories

Walter Frei | 2013年 11月 4日

在之前的博客中,我们向您介绍了线性静态问题的网格剖分注意事项。这里的核心概念之一是网格收敛,随着网格的细化,解将变得更为精确。本篇博客中,我们将更加深入地探究对于线性静态有限元问题,如何选择一个合适的网格来进行网格收敛研究。


Walter Frei | 2013年 10月 22日

本篇博客中,我们介绍了线性静态有限元问题的网格剖分注意事项。这是网格剖分技巧系列博客的第一篇,希望能帮您建立起对有限元模型剖分网格的信心。


Walter Frei | 2013年 9月 16日

COMSOL Multiphysics 提供了多个不同的湍流问题求解公式:L-VEL、yPlus、Spalart-Allmaras、k-epsilon、k-omega、低雷诺数 k-epsilon,以及 SST 模型。 所有这些公式都可以在 CFD 模块中调用,L-VEL, yPlus, k-epsilon 和低雷诺数 k-epsilon 则在传热模块中可用。本博客简要介绍了我们为何要使用这些不同的湍流模型,如何从中选择,以及如何有效使用它们。在博客中,您还可以找到重点讨论特征的高 亮链接。


Categories

1 2 3