化工 博客文章

借助仿真 App 探索生物传感器设计中的生物学
生物传感器是各类从分子层级理解生物系统详细机制的分析工具的主要部件。这些分析工具可用于各领域的生物分子检测,比如制药、医疗和食物行业、农业、环境技术以及针对生物系统的一般性研究。生物传感器演示 App 是一个非常不错的应用实例,它使得这个领域的人士即使不是仿真专家,也能从精确的多物理场仿真中受益。

混合动力和电动汽车中的牵引力从何而来?
您可能会认为自己开车很稳,但您的发动机很可能并不这么认为。每天我们都要面临像信号灯这样的路障和变速限制,这意味着我们对汽车动力传动系统的动力需求变化很大。我们希望混合动力或电动汽车的性能可以与现代汽车相提并论,比如当频繁踩油门和刹车的时候。所以,设计人员需要能以一种安全的方式实现这类目标,这其中就涉及了对电池的模拟。

圆喷射燃烧器中的合成气燃烧
本篇博客中,我们将使用反应流接口和固体传热接口分析圆喷射燃烧器中合成气的燃烧,并对比从基准模型中获取的结果与实验结果。

通过仿真优化生物制药工艺
隐藏在生物制药开发背后的生物和化学过程对产品质量有着重要的影响。在研究和优化这些技术时,仿真因其可以通过更低的成本来快速获得结果而被看作一项相当宝贵的资源。让我们来了解 COMSOL Multiphysics 如何能帮助您模拟生物制药工艺。

模拟理想搅拌反应釜系统
连续搅拌釜反应器 (CSTRs) 也称作理想搅拌反应釜,常用于化学及生物化学行业。这类反应釜可以在稳定状态下运行,具有良好的混合属性,所以我们假定反应釜内的成分是均匀的。使用反应工程接口中的一个新模型,我们能够可视化一个理想反应釜系统内的动力学。

为什么汽车蓄电池在寒冷天气中表现欠佳
如果不提前采取防范措施,那么在冬天寒冷的早晨发动汽车将会是一段令人不愉快的经历。发动机无法启动通常是由于蓄电池发生故障,为什么汽车上的蓄电池比其他零件更加敏感呢?答案就在于蓄电池具备的将化学能转换为电能的能力,当冬天生成的热量最少且低温下获得的热能较少时,这一转换能力就变得很差。

多相催化建模方法
获取异质催化的介绍,异质催化反应中化学物种的主要步骤,吸附-解吸模型,表面反应,以及更多内容…

零经验进行 PCB 板电镀仿真
PCB 板是几乎所有电子产品的心脏,它承载着实现其功能的组件和铜线。制造过程中通常包含电镀环节,不同设计的电镀会有差异。这使仿真和优化工程师要不断创建新模型。如果能将其中大部分工作交给设计和制造 PCB 板的设计、工程和技术人员,让他们自己去进行电镀仿真,那又将如何呢?来这里看下如何实现吧。

多尺度反应器:多维度耦合仿真
在化工行业,填充床反应器是最常见的反应器。这类反应器可用于化学合成、废水处理以及催化燃烧等。通常情况下,多相催化中就需要填充床。它的常见设计是填充有催化剂颗粒的圆柱形容器。颗粒可通过各类支持的结构进行存储,比如管、流道,或容器内的单独隔间。最后一种形式被称作堆积填充。

锂离子电池设计中的热分析
对于锂离子电池的性能而言,热管理是一项需要考虑的重要因素。您可以利用模拟和仿真来分析热在能源内的传递,进而改进设计流程。

有时,雪茄并非只是雪茄
作为一名化学工程师,我实在无法只满足于享受吸雪茄的过程。在这篇博客中,我对雪茄进行了分解,研究了它的结构和内部化学反应区,还通过一个简单的模型演示了雪茄内温度与烟的分布及氧气浓度。

糖尿病管理的电化学建模
对于糖尿病这一全球性杀手,目前还没有有效治愈手段:据世界卫生组织估计,全世界范围内有 3.5 亿的糖尿病患者,年平均死亡率在 1% 左右。幸运的是,现代医学使糖尿病患者能够管理自身的葡萄糖水平和摄入量,因此在许多国家糖尿病的威胁已大为降低。多数糖尿病患者必须全天候监测他们的葡萄糖水平,这就需要有精确的方法来测量血液中的葡萄糖浓度。对于现代传感器的设计而言,电化学方法是一个很好的选择。

对锂离子电池进行建模以提升质量和安全性
对于锂离子电池而言,质量和安全性是最重要的设计要素。Intertek Semko AB 每年要对 20000 个电池做出评估,当然更加理解这一点。

使用 COMSOL Multiphysics 估算化学反应参数
化学反应动力学系列的最后两篇博客文章关注基于一组特定参数的化学反应的建模。尽管这一点很重要,学术界和工业界对此也很感兴趣,但通常在建模时,会假设相关参数的取值。

酶动力学,米氏动力学
在 Michaelis–Menten 动力学诞生 100 周年之际,我们以我们所知道的最佳方式–仿真来纪念这一开拓性的成果。

质子交换膜燃料电池建模示例
聚合物电解质膜或质子交换膜(proton exchange membrane,简称 PEM)燃料电池是一种极具应用潜力的便携式清洁电源,是交通运输和发电行业的研究热点。COMSOL Multiphysics,这款强大的仿真工具,可以帮助理解和克服 PEM 电池燃料设计和施工过程中的挑战。

用阿伦尼乌斯方程描述化学反应动力学
无数的复杂情况和陷阱使化学模拟具有挑战性。在这篇博客中,我们对化学动力学和阿伦尼乌斯定律进行了介绍,以提供帮助。

如何选择正确的电流分布接口?
在设计电化学电池时,我们需要考虑电解质和电极中的三类电流分布:一次分布、二次分布 和三次分布。不久之前,我们介绍了电流分布的基本理论;本文则以线电极为例,详细解释不同的电流分布类型,帮助你在 COMSOL Multiphysics 中选择合适的电流分布接口,顺利执行电化学电池仿真。

电流分布理论
在电化学电池的设计中,您需要考虑电解质和电极中的三种电流分布类型,它们被称作一次、二次 和三次电流分布。三种电流分布对应着不同的近似方式和程度,采用其中哪一个则取决于电解质溶液电阻、有限电极反应动力学以及质量传递的相对重要性。在本文中,我们将概述电流分布的概念,并从理论层面上探讨这一主题。

模拟冷冻干燥工艺
提起冷冻干燥工艺,我就会想起小时候吃过的像冻干冰淇淋一样的太空食品。对于保存太空食物而言,冷冻干燥工艺很重要,但它也可以用于其很多应用。

利用橙子电池模型学习电化学建模
你的化学老师曾经拿出橙子或者柠檬来解释电池的概念吗?也许你还记得,当他把几根金属钉插进了柑橘类水果后,居然成功地发出了电!整个班的同学都目不转睛地盯住这个迷你发电机。如果我们现在使用仿真工具来演示橙子电池 的工作原理,然后将它 用作电化学建模的入门教程,效果会怎样呢?

模拟电分析:循环伏安法
如果你不是电化学家,很有可能从未接触过循环伏安法。但是,当你去看任何一本电化学期刊、会议论文集或者电化学传感器制造商公司的网站时,会发现在靠前的位置总能看到一个独特的“双峰”图。 为什么要使用循环伏安法? 这个“双峰图”看起来像这样: 这是一个循环伏安图,绘制了电化学电池中电流随施加电压的变化而变化的曲线。通过在一定范围内扫描往返变化的电压,驱动电极的电化学反应朝不同方向发展: 循环伏安法是一种应用非常广泛的技术,用于检测电极与电解质(如盐溶液)界面的物理和化学性质。电活性表面在所有电化学装置中都很常见,包括电池和燃料电池等常见的能量提取装置,以及如用于监测糖尿病患者血糖浓度的电化学类传感器。然而,人们仍然没有完全理解电极-电解质界面的化学性质,这是一个活跃的学术研究领域。 伏安法对设备验证和设计很有价值,因为一次扫描就包含了关于系统的化学和物理行为的大量信息。此外,伏安法还是传感器运行的基本工作模式,因为在设计良好的系统中,测得的电流与分析物的浓度成线性关系。对电极材料进行化学修饰使得伏安法可专门用于检测混合物中的某种生物化合物或有毒气体,由于可以使用丝网印刷电极技术实现“一次性电化学”应用,因此它成为了一种成本低廉的先进技术。 对于设计和研究而言,伏安法的最大优势在于其提供信息的多样性。它阐明了电极表面的电解速率与反应化学物质通过扩散到达该表面的传输速率之间的竞争关系,还能提供有关溶液中化学反应的机理和速率的宝贵信息。在不同的扫描速率下使用伏安法,改变了电压随时间的变化速率,我们可以观察到不同系统时间尺度下不同的物理现象。 为什么模拟伏安法? 尽管伏安法非常重要,但却是一种理解起来有些困难的技术。系统中所有真实的物理效应都被归结到一些非常晦涩的电流-电压曲线中,虽然经验丰富的电分析化学家可以直观地从伏安图中“看到”化学反应,但要从实验中获得定量信息,就必须将伏安法与理论预测结果进行比较。由于电化学动力学通常是非线性的,而伏安法又是一个瞬态问题,理论上不太可能获得解析解(极少数特殊情况除外),因此必须进行计算机模拟。 保持模型的简洁性 COMSOL 的电化学模块包括一个电分析 接口,专为模拟伏安法等电分析技术而设计。其中假定存在大量的支持电解质,例如,人为地添加到电化学电池的电解质中的惰性盐(如氯化钾),用于增加其导电性。支持电解质可减轻电场,其优势在于可以简化实验分析和基础理论。我们假定只有扩散对化学物质的传递起作用,因为溶液没有搅拌,而且时间尺度足够短,溶液中的自然对流不重要。在这些条件下,化学物质传递方程是线性的,因此更容易求解。 在伏安法实验的典型持续时间内,物质扩散的尺度非常短,通常远小于 1mm。对于半径超过 1mm、形状像圆盘的传统“大电极”,可以准确地假设扩散只在电极表面的法线方向比较显著,电极边缘的影响可以忽略,因此整个电极表面的反应和传递是均匀的。因此,伏安分析可以简化为一维瞬态问题。 设置循环伏安模型 为便于定义瞬态外加电压及其对电解反应速率的影响,电分析 接口包含一个预置的“电极表面”功能,可直接设置伏安法的电位窗口和扫描速率,它会自动实现电极动力学的 Butler-Volmer 方程,但与 COMSOL Multiphysics 中的其他很多功能一样,用户也可以自定义动力学表达式。然后,相关的循环伏安法研究会使用适当的数值方法对瞬态扩散方程进行积分,自动求解相应的瞬态问题。使用“参数扫描”功能,我们可以在一次计算中研究一系列扫描速率。 查看结果 从上图中,我们可以看到在 1mV/s 到 1V/s 四种连续扫描速率下记录的仿真预测的 4 个伏安图,这些预测对应的实验持续时间从近半小时到一秒多一点。可以看到电流随着扫描速率的增加而增加,但伏安图具有相同的“双峰”。后者可以解释为,刚开始时电压无法驱动反应物进行正向反应,因此电流可以忽略不计。随着电压升高,反应加速,因此电流增大。但一段时间后,电极表面的反应会耗尽反应物浓度。这时,决定反应速率的过程发生变化,致使电流受反应物向表面扩散的控制,从而再次下降。反向反应也有类似的过程,当电压扫描回到起点时,生成物会重新转化为原始反应物。 电流密度随扫描速度增加的原因是,扫描速度越快,扩散层形成的距离越短。由于反应物浓度在较短的距离上快速变化为零,扩散通量较大,因此电流也较大。实际上,峰值电流应与扫描速率的平方根成比例:检查这个关系是对实验数据进行验证的常用方法,用于检查测量结果是否受到扩散以外的物理效应的干扰。 在设计传感器时,我们总是希望最大限度地提高电流,从而最大限度地提高灵敏度,因此这种分析有助于电化学电池和化学环境的实际设计。通过比较仿真预测的伏安图和实验测量结果,我们可以确定材料属性和其他可能未知的系统参数,如扩散系数和反应速率。 请尝试对上述动画进行比较,了解电流与不断变化的浓度曲线之间的关系。请注意电极表面(x = 0)的反应物浓度是如何随着电流的增加而趋于零的,一旦电极表面浓度为零,浓度梯度在扩散作用下降低,电流也随之降低。在第二次扫描中,电流被反向反应逆转,电极表面的浓度又恢复到其主体值。 进一步研究 由于电分析 接口将电分析仿真嵌入到 COMSOL Multiphysics 环境(一个功能强大、灵活的有限元方法用户界面)中,因此可以直接进行扩展。通过添加反应域条件,可以将电化学生成物的后续化学反应包括在内;我们可以建立同一过程的二维或三维模型,研究真实系统几何结构中的扩散情况;还可以进行多个伏安循环,或应用非标准电压波形;将反应物对流与流体流动进行耦合,可以研究流体动力电化学。我们还可以通过同一用户界面考虑一系列相关技术,如电位阶跃计时电流法和电化学阻抗谱法。 提示:查看 COMSOL 案例库中的电极循环伏安法模型。

模拟锂离子电池的散热
阅读全文,简要了解如何在 COMSOL Multiphysics® 软件中通过三个顺序研究来创建锂离子电池模型。在文章结尾,我们为您附上了教学模型的下载链接。