每页:
搜索

低频电磁学 博客文章

借助 LED 实现超快速聚合酶链式反应检测

2015年 8月 26日

聚合酶链式反应检测在医学和生物学研究领域有着广泛的应用。然而在过去,此类检测由于耗电量高且检测结果交付速度缓慢,因而只能在实验室中进行。加州大学伯克利分校的研究人员开发出了一种基于 LED (发光二极管)的新型聚合酶链式反应系统,此系统操作简便且结果交付速度较快,可被用于即时检测。

分析不同线圈的互感系数

2015年 8月 19日

您有没有注意到,在一个快乐、热情的朋友身边,您也会感到非常快乐呢?您可以用类似的方式来看待互感:即某一电路中有电流通过时,会在附近的电路中产生感应电流。互感系数用来衡量这种电流感应效应变化的量级。在这篇文章中,我们将探讨使用模拟计算来估算不同线圈中产生的互感。

使用 COMSOL Multiphysics® 模拟磁悬浮轴承

2015年 7月 28日

磁悬浮轴承广泛用在各种工业应用中,比如发电、石油提炼、涡轮机械、泵机和飞轮储能系统。和机械轴承不同的是,这类轴承是利用磁悬浮而非物理接触来支承移动载荷的。由于磁悬浮轴承运行时不产生摩擦且无需润滑,维护费用也低,因此正逐渐取代机械轴承,更何况这种轴承的使用寿命还更长。现在我们一起来了解如何使用 COMSOL Multiphysics® 软件计算磁力、扭矩和磁刚度等设计参数。

模拟电感式位置传感器

2015年 5月 26日

汽车需要能够适应各种驾驶路况,还要应对诸如温度波动等环境变化。因此,开发出能轻松应对这些条件的零件至关重要。在 COMSOL 用户年会 2014 剑桥站收到的研究报告中,有一份就重点研究了电感式位置传感器的功能。

如何模拟三维旋转机械

2015年 4月 30日

电动机械是现代工业社会的重要支柱。在这类种类繁多的机械设备中,发电机或电动机一类的旋转机械应用最为广泛。COMSOL Multiphysics 中的旋转机械,磁物理场接口即旨在模拟这些系统。请跟随我们一起探讨旋转机械的模拟过程,并了解使用此功能详细的最佳做法。

感应炉模拟小技巧

2015年 3月 4日

今天,我们很荣幸地大家介绍一位新的特约作者,来自 SIMTEC 的 Vincent Bruyere,他将分享对感应炉仿真的深入见解。 从食品烹饪到制造业,感应加热在许多应用中都扮演着重要的角色。该非接触式加热因其精确和高效而备受重视。在本篇特约博客中,我将介绍如何在 COMSOL Multiphysics 中建立一个感应炉模型,并将演示如何利用它来提升您的设计。

介电泳分离

2015年 1月 23日

电泳是一种通过电场来控制电中性粒子的运动的现象。了解如何在直流和交流电场中模拟这种效应。

振动悬臂梁的磁阻尼

2015年 1月 12日

把一个振动的导电物体放在静态磁场中会发生什么?磁场将在运动的固体中诱发电流,使运动的电荷产生一个作用力。力作用的结果是抵抗结构的运动,从而产生阻尼。 建模实例:振动悬臂梁的阻尼 我们以一个位于磁场中的悬臂梁为例来说明,如下图所示。假设在梁的自由端施加了力学激励,作用是使梁以恒定的频率振动。这个激励很小,因此位移也将很小。我们还将假定材料为线弹性材料,因此可在频域中对此力学问题进行建模。但是,即使位移很小,速度(即位移的时间导数)可能相当大。 从电磁问题的角度分析,我们假设梁的位移很小,也就是说,磁场线不会随着梁的振动而改变。因此,可以在梁处于未扰动位置时计算磁场。考虑一个由梁和载流导线组成的建模域。建模域周围有一个空气盒包围建模空间,假定空气盒被一个良好的电导体截断,也就是说,系统位于一个金属盒内。 现在,尽管梁本身被假定为具有无限小的位移,但它的速度是很重要的,特别是在高振动频率下。一个在静态磁场 \mathbf{B} 中运动的良导体将产生感应电流 \mathbf{J}i,由以下公式计算: {\mathbf{J}{i}} = \sigma\mathbf{v} \times {\mathbf{B}} 其中,\sigma是材料的电导率,\mathbf{v} 是导体的速度。由于磁感应的影响,将有一个额外的源于感应场的电流密度贡献, {\mathbf{J}{j}} = \sigma{\mathbf{E}} 因此,影响导体的总电流为 {\mathbf{J}} = {\mathbf{Ji}} + {\mathbf{J_j}} =\sigma{\mathbf{E}}+ \sigma\mathbf{v} \times {\mathbf{B}} 假设感应场与静态磁场相比相对较小,因而二次感应效应可以忽略。梁中的电流将与载流导线引起的静态磁场相互作用,并对导电梁施加一个局部力(洛伦兹力): {\mathbf{F = J \times B}} 这个力的作用将与材料运动速度相反,导致振动的阻尼产生。损失的振动能量以欧姆热损失的形式消散: \mathbf{Q} = |\mathbf{J}|^2/ \sigma 系统的建立:振动导电横梁临近一根大直流载流导线。 将磁场、电场与固体力学相耦合 那么,磁场是否为梁提供了明显的阻尼呢?让我们使用 COMSOL Multiphysics 软件及其附加的 AC/DC 模块和结构力学模块来寻找答案。(注意,我们可以用声学模块或 MEMS 模块来代替结构力学模块。) 在我们的建模示例中,假设以下情况为真: 线路中的驱动电流和由此产生的背景磁场在一段时间内保持不变。 梁的结构位移相对很小 相对于背景场而言,由感应电流产生的磁场很小。 该材料具有各向同性和线性特性 在这些假设下,我们可以提出以下问题:由于不同的背景磁场强度,振动的金属梁将承受多少阻尼? 为了回答这个问题,我们需要将两个磁场 接口和一个固体力学 接口进行耦合。 该模型的建立分为两个步骤。首先,我们使用稳态研究 计算悬臂梁旁边的载流导线引起的静态磁场。第二步,将结构振动和静态磁场的共同作用引起的电流作为外部电流密度,输入到第二个时谐磁场分析中。在这里,使用固体力学 接口和频域 研究,求解悬臂梁的(小)位移所耦合的谐波产生的电流,用于一系列的谐波激励载荷。我们可以通过用户定义的方式定义感应电流和洛伦兹力。这个力矢量可以作为结构问题的主体载荷来施加。此外,磁场的强度可以通过参数化扫描研究来改变。这可以观察到不同磁场强度下磁阻尼对振动梁的影响。 首先,我们可以模拟由于流经导线的电流而产生的磁通量。随着通过电线的电流增加,磁通量的大小也会增加。 由流经导线的恒定电流而产生的磁场。 接着,我们绘制了不同磁场强度下悬臂梁的尖端位移与结构激励频率的关系。如图所示,悬臂梁受强磁场作用有明显的阻尼振动。 不同磁场强度下的尖端位移与激励频率的关系。 模型下载 从 COMSOL 模型库下载文中介绍的振动导电固体的磁阻尼教程模型,了解如何建立这个模型。


浏览 COMSOL 博客