每页:
搜索

RF 与微波工程 博客文章

锥型喇叭天线的二维轴对称模型

2014年 9月 4日

我们在之前的博客中已经介绍了怎么利用对称、反对称,以及周期性边界条件来节省电磁模型的建模时间。今天,我们将为您展示一个利用轴对称建立的模型 — 锥型喇叭天线模型。

射频加热和微波加热模拟快速入门

2014年 5月 20日

在射频加热和微波加热网络研讨会中我们经常演示波导模型,因为使用它阐述概念人们比较容易理解。这里,我们再次将其作为模拟射频加热和微波加热的快速入门。

计算波纹波导的阻抗

2014年 3月 25日

您知道可以在 COMSOL Multiphysics® 中计算横截面不均匀的波导(如波纹波导)的有效阻抗吗?我们将在这里为您演示。

分支线耦合器的建模

2014年 3月 14日

分支线耦合器,是一种 90 度 或正交 混合耦合器,由于其制造工艺简单且易于设计,被广泛应用于各个行业。分支线耦合器是无源器件,常用于单天线发射器系统和 I/Q 信号分配器/合路器。让我们了解一下这类耦合器的基本工作原理及一些重要的设计要素。

基准模型的结果与菲涅尔方程的解一致

2014年 3月 12日

聪明的想法: 当一束光(电磁波)在自由空间中传播时,击中了电介质,一部分光会被透射,一部分会被反射。

模拟电磁波和周期性结构

2014年 1月 17日

我们经常想要模拟入射到周期性结构中的电磁波(光、微波),例如衍射光栅、超材料,或频率选择表面。这可以使用 COMSOL 产品库中的 RF 或波动光学模块来完成。两个模块都提供了 Floquet 周期性边界条件和周期性端口,并将反射和透射衍射级作为入射角和波长的函数进行计算。本博客将介绍这类分析背后的概念,并将介绍这类问题的设定方法。

为什么微波炉加热食物不均匀?

2013年 9月 3日

我们可能都经历过这样的场景:下班回到家,把昨晚的剩菜放在微波炉里,坐下来准备吃一顿简餐,结果却发现吃到的食物一口滚烫,一口冰冷。这样的经历不止一次促使我思考:为什么微波炉对食物的加热会这么不均匀? 微波加热的物理原理 微波 是一种高频电磁波。微波炉中用来加热食物的微波波长约为 12.23cm,频率为 2.45GHz。电磁波产生振荡的磁场和电场,激发磁场中的分子,从而产生热量。 有多种不同的因素会导致令人不快的微波加热体验。首先,一顿饭中的不同成分通常具有不同的能量吸收率。非常明显的一个例子是在重新加热一个包子时——包子馅吸收热量的速度比包子皮快得多,使得包子馅是热的,而外面的包子皮冰冷。这是因为含水量较高的食物吸收微波能量的效率较高,而含水量较低的食物吸收热量较慢,导致加热不均匀。这是由于水分子中存在偶极子,使得分子的正负两端在振荡电磁场中来回转换。正因为如此,我们还会注意到液态水比冰加热的速度更快,因为液态分子比冰中的分子移动更自由,产生更多的碰撞,从而产生更多的热量。 微波炉加热不均匀的另一个原因来自烤箱内部复杂的振荡模式。下面,我们使用 COMSOL 仿真来仔细研究微波加热食物背后的物理原理,从中我们可以了解加热过程中发生的电磁场和热传递。 微波加热模拟 首先,我们可以设置微波炉的几何结构。在我们的模拟中,微波炉被设置为一个连接到 500W、2.45GHz 微波源的铜盒, 然后,通过位于 烤箱右上角的波导 将微波引向烤箱的中心。底部装有放置食物的玻璃板。为了使我们的分析简单,我们可以看一下加热是如何在均匀食物(例如土豆)中发生的。微波炉、波导、玻璃板和土豆的几何结构如下所示。由于模型存在镜像对称性,因此我们只需要建模一半的几何图形。 微波炉、波导、玻璃板和土豆的几何形状。由于镜像对称,几何图形被缩小。 在模拟中,从土豆的底部切下一块,以使放在盘子上的土豆保持稳定性。这种切割也有助于建立有限元网格,允许在土豆与板接触的区域中进行详细分析。通过使用 阻抗 边界条件计算来自微波炉和波导铜壁的电阻性金属的热损失,虽然损失很小。 当我们向土豆输入微波辐射时,土豆就像一个共振腔,将一些电磁场捕获在里面。转移到土豆上的能量(即耗散功率)大约是辐射源释放能量的 60%。其余的能量通过端口反射回来。从下面的模拟中可以看出,谐振腔在土豆的中心产生了一个峰值,在此处耗散功率最高。 马铃薯内部耗散的微波功率分布。注意土豆中心的峰值。 这个微波场引起土豆内部的加热。5 秒钟过后,我们可以看看土豆内部产生的热量。在模拟中,我们可以观察到,只有土豆的中心在 5 秒钟后开始加热。此外,由于土豆的低热导率,热量仍然集中在中心,而没有扩散。这导致了我们在微波炉中加热食物时有时会得到食物中心热外部冷的结果。 加热 5 秒钟后土豆的温度分布。 如果我们继续加热土豆更长时间,土豆的中心温度最终会达到沸点,蒸汽会形成并向外扩散,加速热量传递,并随着它的干燥降低中心的功率耗散。这将在温度接近 100℃ 时发生,尽管土豆内部不断上升的局部压力可能会增高沸点。然而,当过热到一定程度时,就会发生一次或几次微爆炸,打开通向马铃薯外部的蒸汽通道。任何尝试过微波处理土豆泥或浓汤的人都可能经历过这些微爆炸,并亲眼见证了它们对微波炉内部的影响(土豆泥四溅……)。虽然上面讨论的模拟不包括这些非线性效应,但它可以作为包括这些和其他效应的更复杂模拟的良好起点。 微波炉中的驻波 导致土豆受热不均匀的机制也在整个微波炉中发挥作用。共振电场的形状由微波炉内部大小不同的电场强度斑点的图案。这些斑点是由驻波 引起的。驻波是由于电磁波相互叠加时在烤箱中来回反射而产生的。出现驻波会导致微波中出现电场强度高低分布的斑点图案。使用上面相同的几何结构,我们可以分析这些驻波: 微波中驻波的位置。 旋转位于微波炉底部的玻璃板,将土豆放在板的边缘,而不是中间,可以减轻高强度斑点导致加热不均匀的问题。通过上图,我们可以看到旋转是如何通过斑点移动食物的。 联系 COMSOL 进行软件评估 拓展资源 COMSOL 案例库中下载微波炉模型

使用 COMSOL 模拟共面波导

2013年 6月 20日

共面波导 (CPW) 常用于微波电路中。使用 COMSOL Multiphysics 及其附加产品 RF 模块,您能够轻松地计算设计共面波导时所需的阻抗、场、损耗和其他工作参数。 二维接地共面波导设计 下图为2个典型的共面波导的横截面。如图所示,介电基板的顶部刻蚀有金属层。当基板底部也刻蚀金属层时,称为接地共面波导。底部的金属层通常是经通孔连接至电介质顶部的金属层。虽然这些金属层常常被称为接地,但是金属层中有电流流过,因此表面的电势并不恒定。接下来,我们将重点讨论接地共面波导的示例。 共面波导可以由以下特征参数表征:金属迹线层厚度 t,中心导体宽度 w,中心导体和侧导体之间的间隙 g。如果是接地波导,还包括介电基板厚度 h。 无论进行任何仿真分析,都需要先计算趋肤深度: 以工作频率为 1GHz 的器件中使用的铜为例,其相对磁导率和介电常数为 1,电导率为 6×107S/m,趋肤深度为 2.05µm。由此可知,电场和电流衰减为:,其中  是进入金属的距离。趋肤深度和金属层的厚度将决定需要进行什么分析。如果趋肤深度和迹线厚度相同,则有必要将金属域本身包含在 COMSOL 模型中。另一方面,如果趋肤深度远小于迹线厚度,至少小 10 倍 (), 那么金属层一侧的场不会显著影响另一侧的场。在这种情况下,没有必要对金属层的内部进行建模,可以将它们看作模拟域的边界。 另外,如果金属层的厚度 t 足够小,使得其对结果的影响可以忽略不计,那么我们可以将金属迹线建模为理想电导体 (PEC) 边界条件。例如,下图显示了一个最简单的共面波导模型,该共面波导上方的空气区域可以通过代表金属封装的理想电导体边界条件,或代表没有电流流过的表面的理想磁导体边界条件来截断。 我们可以使用 RF 模块建立和求解此类模型,选择二维模式分析研究类型。计算阻抗 Z=V/I;计算电压 V 沿导体之间的任意一条线获取电场的路径积分,此处标记为 A;计算电流 I 沿任意路径环绕中心导体对磁场进行积分,标记为 B。同轴电缆的阻抗教程模型提供了一个类似的示例,其中详细介绍了如何设置这类模型。 建立三维共面波导模型的 3 种方法 上述二维模型可以快速计算共面波导的阻抗,并可以帮助我们了解横截面中的相对场强。然而,我们通常对一些结构上有变化,需要建立完整三维模型才能求解的设备更感兴趣。这就提出了如何激励三维共面波导模型的问题。我们可以采用多种不同的方法,但首先可以考虑使用理想电导体表面建模的共面波导,其迹线厚度 t,可以忽略不计。 1.为模型添加矩形面 如下图所示,一种方法是向模型中添加几个矩形面,这些矩形表面可以垂直或平行于共面波导平面,代表探针尖端。这些理想电导体表面充当两侧导体之间的桥梁。然后在电桥和中心导体之间的另一个矩形面上应用集总端口激励。该集总端口在相邻的理想电导体表面之间施加电压差(注意:图中箭头的方向是任意的,它们只是为了表明存在沿箭头方向流动的正弦时变电流)。 这种方法非常简单,只需要对模型进行少量修改。要了解使用此方法激励的共面波导模型的示例,请查看 COMSOL 案例库中接地共面波导上的 SMA 连接器模型。 2.通过两个集总端口减少修改 实际上,上述方法需要向模型添加一些额外的结构,因此我们可以考虑一种需要更少修改的方法,如下图所示。通过在中心导体两侧增加 2 个集总端口也可以激励共面波导。 这种方法的唯一困难是它需要手动设置;2 个集总端口功能中的端口号、尺寸以及最重要的是,方向 相同,而且必须设置集总端口的方向,使它们要么都指向中心导体,要么都指向远离中心导体。 相比于第一种方法,这种方法在模型中引入了较少的额外结构,但确实需要两个端口特征,因此必须手动设置并指向正确的方向。 3.模拟两点探针 我们还可以扩展共面波导的布局,以及将理想电导体的侧平面扩展为围绕中心理想电导体的带状结构,然后为集总端口引入一个额外矩形,模拟两点探针,如下所示: 结束语 当然还有其他方法可以激励共面波导,但以上3种方法是最常见的。这 3 种方法的解之间的差异应该很小,但应该注意,所有这些都是为了近似激励,并且集总端口附近的场并不是理想的物理场。这是一种局部效应,远离激励的场和计算的阻抗等量应该更准确。 为了获得最高的保真度,可以对同轴波导的耦合进行具有完整细节的显式建模,如上图所示。有关说明此方法的类似示例,请参阅 Wilkinson 功分器模型。 所有上述方法都可以推广到共面波导金属迹线厚度值很大的情况,或者金属层必须明确包含在模型中而不是通过边界条件近似的情况。其他激励策略当然也是可行的,但这些是最常见的方法。学习了这些方法,您就可以自信地使用 COMSOL Multiphysics 和 RF 模块进行共面波导的建模和设计。


81–88 of 88
下一页
最后一页
浏览 COMSOL 博客