每页:
搜索

计算流体力学 (CFD) 博客文章

通过传热仿真分析 LED 灯泡设计

2021年 7月 22日

在我年轻的时候,我花了很多时间参加体育锻炼和比赛。随着年龄的增长,我的训练和比赛被安排的越来越晚。我经常会在晚上去踢足球。然而,当我踏上球场时,它几乎像白天一样明亮…… 依靠 LED 技术的球场内外 球场附近的灯光使我和我的球队可以一直比赛到深夜。 夜晚灯光明亮的足球场。图片来自 Jonathan Petersson,Unsplash 我的经历并不是独一无二的:几十年来,世界各地的运动队都会在晚上比赛和练习。然而,最近几年,你可能已经注意到,球场上的一些区域比以前更加明亮了。这是为什么呢? 为了提高可持续性,许多体育组织选择用发光二极管(LED)技术来取代他们体育场馆的传统照明系统。LED 灯泡不仅比传统的白炽灯泡更节能,而且更亮。根据美国环境保护署(EPA)的说法,“绿色运动”的好处包括: 保护生物多样性 降低运营成本 创造和扩大绿色产品和服务市场 其他更多的好处 一种常用来为各种户外(和室内)体育场馆和球场照明的 LED 灯泡是 LED 玉米灯泡。就像一个运动员将日常生活和体育锻炼融入到一个时间表中一样,LED 灯泡必须将许多功能融入到一个系统中。通过仿真,工程师可以研究和更好地理解 LED 技术背后的原理。我们将在今天的博客文章中探讨一个例子。 多功能 LED 灯泡 走进一家五金店,经过庭院家具、烧烤架和户外电源设备的陈列台,你可能会发现一片 LED 玉米灯泡整齐地藏在一个专门用于照明设备的过道里。在这个区域,你可以看到各种各样大小、样式和价格不同的 LED 灯。它们通常由一二百个微小的发光二极管组成,排列在一起并固定在金属或环氧树脂结构上。非常贴切地,LED 玉米灯泡是以与它们形状相似的蔬菜命名的:玉米棒。 一个 LED 玉米灯泡。图片来自 Dmitry G – 自己的工作。通过Wikimedia Commons 获得CC BY-SA 3.0许可共享。 玉米 LED 灯泡的独特形状可能会吸引消费者的眼球,但正是它们的节能性能让它们成为高强度放电(HID)和白炽灯泡的热门替代品。与白炽灯泡相比,LED 预计将节省 75% 的能源,使用寿命可延长 25 倍。(参考1)。 为了增加它们的多功能性,这些灯泡的色温范围从 2700K 到 6000K。LED灯泡的色温代表灯的颜色。高开尔文(5500K-6500K)的灯泡是亮白色,低开尔文(2700-3000K)的灯泡是暖白色。 LED 玉米灯泡有多种风格,可适用于室外和室内应用,照亮从车库和仓库到高速公路和体育场的所有地方。 设计 LED 的挑战 尽管 led 通常被认为比传统灯泡更有高效,但在将电转化为光方面,它们仍然不是 100% 的有效。它们的一些能量以热量的形式释放出来。这种热量会滞留在灯泡的颈部,导致灯泡中的电子元件(如芯片)随着时间的推移而退化。因此,有些人已经注意到,LED的寿命只是其包装上承诺的寿命的一小部分。因此,热管理是设计 LED 灯泡时的一个重要考虑因素。 传热建模可以用来优化LED灯泡设计的几何形状和材料,估计灯泡内将会发生的最高温度。今天,我们将探索LED玉米灯泡的热模型。 在COMSOL Multiphysics®中模拟LED灯泡 LED 灯泡冷却教程模型 LED 灯泡冷却教程模型通过考虑 LED 芯片的加热、浮力驱动气流的冷却和周围环境的辐射来估计 LED 玉米灯泡的温度。此外,还考虑了能量传输和动量传输之间的耦合,来计算 LED 灯泡内外的非等温气流。 […]

使用仿真对暖通空调系统设计进行微调

2021年 6月 23日

你是不是经常会发现:你感到办公室很热,而你的同事却冷得在发抖?或者可能是反过来,你才是那个感到冷的人。这就像“一个杯子是半满还是半空”这个古老的问题一样,对环境温度的感知因人而异。为了确保建筑物内居住者的最大舒适度,供暖、通风和空调(HVAC)系统工程师可以通过多物理仿真精确评估室内气候条件。

模拟跑车侧门和后视镜上的风荷载

2021年 5月 27日

在这篇博文中,我们使用大涡模拟 (LES) 和结构分析来分析高速行驶的跑车的门和侧视镜上的风载荷和气流。

利用拓扑优化设计区域热网

2021年 2月 8日

发电厂在冬季可以利用热电联产达到高效供电。它是如何做到的呢?依靠区域热网。以前,这种网络设计仅限于小型网络的线性模型或非线性模型。最近的研究表明,我们可以使用基于梯度的优化的非线性模型设计大型网络(参考文献 2)。

Veryst 使用 COMSOL Multiphysics® 模拟室外跑步者之间的飞沫传播

2020年 11月 23日

在 2020 年 3 月之前,钥匙、手机和钱包是我们出门前必需携带的三件物品。为了控制新冠病毒(COVID-19)的传播,口罩现在成为了第四件必需品。美国疾病控制与预防中心(CDC)的主任 Robert Redfield 博士表示,口罩是“我们减缓和阻止病毒传播的最强大武器之一”(参考文献1)。

唇彩为什么会表现出反重力作用?

2020年 9月 10日

我们来解释一下一种神秘的病毒现象:唇彩似乎可以漂浮起来对抗地心引力。阅读更多(并观看相关视频)…

使用多物理场仿真优化无创通气(NIV)面罩设计

2020年 8月 13日

无创呼吸机(Noninvasive ventilation,NIV)是一种医疗救助装置,它通过持续气道正压通气技术(Continuous positive airway pressure,CPAP)为呼吸困难的患者提供空气。

COMSOL®中的多相流建模与仿真:第1部分

2020年 3月 26日

多相流通常包括气-液、液-液、液-固、气-固、气-液-液、气-液-固或气-液-液-固混合物的流动。本系列博客主要讨论气-液和液-液混合物,并简要讨论固-气和固-液混合物。此外,我们还将介绍 COMSOL 软件中 CFD 模块和微流体模块中的模型和模拟策略。 不同尺度的多相流建模 使用数学建模可以对不同尺度的多相流进行研究。最小尺度约几分之一微米,而最大尺度可达几米或几十米。由于尺度甚至可以相差大约八个数量级,最大尺度可能比最小尺度大一亿倍,在整个尺度范围内使用相同的力学模型,在数值上无法解析最小尺度到最大尺度的多相流。因此,多相流的建模通常分为不同的尺度。 在较小的尺度上,可以对相边界的形状进行详细建模;例如,气泡与液体之间的气液界面的形状。在软件中,这种模型称为分离多相流模型,通常使用表面追踪法来描述此类模型。 在较大尺度上,如果必须详细描述相边界,则模型方程无法求解。相反,可以使用场(例如体积分数)描述不同的相。分散多相流模型方程中,相间效应(例如表面张力、浮力和跨越相边界的传递)被视为源和汇。 分离多相流模型详细描述了相边界,分散多相流模型则只考虑分散在连续相中的一个相的体积分数。 上图显示了分离和分散多相流模型的主要区别。在上述两种示例中,均使用函数 Φ 来描述气相和液相。但是,在分离多相流模型中,不同相之间相互排斥,并存在一个清晰的相边界,在此边界上相场函数 Φ 发生突变。除了追踪相边界的位置以外,相场函数没有任何物理意义。 在分散多相流模型中,函数 Φ 描述了气相(分散相)和液相(连续相)的局部平均体积分数。通过平均体积分数可以在该区域的任一点顺利地找到介于 0 和 1 之间的值,这预示着在其他均质域中是存在少量还是大量气泡。也就是说,在分散多相流模型中,可以在同一时间和空间点上定义气相和液相;而在分离多相流模型中,在给定的时间和空间点上,只能定义气相或液相。 分离多相流模型 对于分离多相流的模拟,COMSOL Multiphysics® 软件提供了3种不同的界面追踪方法: 水平集法 相场法 移动网格法 水平集和相场都是基于场的方法,其中相之间的界面代表水平集或相场函数的等值面。移动网格法与上述两种方法完全不同,它将相界面模拟为分隔两个域的几何表面,每个域对应不同的相。 基于场的问题通常是在固定的网格上解决,而使用移动的网格可以解决移动网格问题。 下面的动画为一个T型微通道中生产乳液的模拟结果,该模型使用了相场法进行求解。在动画中,我们可以看到相边界与网格的平面和边缘不一致,相边界由相场函数的等值面表示。   在相场法和水平集法中,有限元网格不必与两个相的边界一致。 相反,下图显示了带有移动网格的上升气泡的验证模型。网格与相边界的形状保持一致,并且网格边缘与相边界重合。但是,移动网格模型也有缺点,即气泡的变形使两个次级气泡从母气泡分离。此时,必须将原始相边界划分为几个边界。该方法太复杂,并且尚未在 COMSOL® 软件中实现。因此,COMSOL® 软件中的移动网格法无法处理拓扑变化。而相场法不存在这个缺点,可以处理相边界形状的任何变化。   上升气泡的验证。当两个次级气泡脱离母气泡时,发生拓扑变化。 什么时候使用相场法和移动网格法? 对于给定的网格,移动网格法具有更高的精度。基于这一优势,我们可以直接在相边界上施加力和通量。基于相场的方法需要围绕相边界表面建立密集网格,以解析该表面的等值面。由于很难定义一个精确贴合等值面的自适应网格,因此通常必须在等值面周围建立大量密集网格。在具有相同精度的情况下,与移动网格相比,这样做会降低基于场的方法的表现。那么,什么时候使用这些不同的方法呢? 对于不希望发生拓扑变化的微流体系统,通常首选移动网格法; 如果需要拓扑变化,则必须使用相场法: 当表面张力的影响较大时,首选相场法 如果可以忽略表面张力,首选水平集法 分离多相流模型和湍流模型 在湍流模型中,由于仅解析平均速度和压力,流体的细节会丢失。从这一点来看,表面张力效应在流体的宏观描述中也变得不那么重要。由于湍流表面的流动也比较剧烈,因此几乎不可能避免拓扑变化。所以对于湍流模型和分离多相流模型的组合,最好使用水平集法。水平集法和相场法都可以与 COMSOL Multiphysics 中的所有湍流模型结合使用,如下图和动画所示。 在COMSOL Multiphysics中,所有湍流模型都可以与相场法和水平集法相结合来模拟两相流。   将水平集法与 k-e 湍流模型相结合模拟反应堆中水和空气的两相流。 分散多相流模型 万一相边界过于复杂而无法解析,则必须使用分散多相流模型。 CFD 模块提供了 4 种不同的模型(原理上): 气泡流模型 适合高密度相中包含较小体积分数低密度相 混合模型 适合连续相中包含较小体积分数的分散相(或几个分散相),其密度与一个或多个分散相相近 欧拉–欧拉模型 适用于任何类型的多相流 可以处理任何类型的多相流,且气体中有密集颗粒,例如流化床 欧拉–拉格朗日模型 适合包含相对较少(成千上万,而不是数十亿)的气泡、液滴或悬浮颗粒流体 适合气泡、颗粒、液滴或使用方程模拟的颗粒,该方程假定流体中每个颗粒的力平衡 什么时候使用不同的分散多相流模型? 气泡流模型 气泡流模型显然适用于液体中的气泡。由于忽略了分散相的动量贡献,因此该模型仅在分散相的密度比连续相小几个数量级时才有效。 混合物模型 混合物模型与气泡流模型相似,但考虑了分散相的动量贡献。它通常用于模拟分散在液相中的气泡或固体颗粒。混合物模型还可以处理任意数量的分散相。混合物模型和气泡流模型均假设分散相与连续相处于平衡状态,即分散相不能相对于连续相加速。因此,混合物模型无法处理分散在气体中的大固体颗粒。 当多相流混合物被迫通过孔口时,用混合物模型模拟了5种不同大小的气泡。流动中的剪切力导致较大的气泡破裂成较小的气泡。 欧拉–欧拉模型 […]


第一页
上一页
1–8 of 101
浏览 COMSOL 博客