每页:
搜索

声学与振动 博客文章

三星采用仿真技术改善扬声器设计

2019年 7月 29日

当你听到三星这个名字时,你可能会想到智能手机和电视机。然而,三星还有一个目标是成为排名第一的音响公司。为此,三星美国研究中心声学主管 Allan Devantier 在加州建立了三星音频实验室。他组建了一个工程技术团队,他们的专长包括传感器、数字声音处理(DSP)、声学、编程等——但这个难题还有另外一个方面……

如何在声学仿真中根据频带自动划分网格

2019年 6月 26日

想象一下一架优雅的三角钢琴的弧形琴盖。曲线对应于琴弦的长度,琴弦的长度对应于音高的感知。这种视觉感知体现了声学的一个重要元素:我们对音调的感知是基于对数的。这意味着声学现象涉及到较大的频率范围。因而,在对声学问题进行建模时,我们需要对这较大的波长范围进行网格划分。那怎么操作呢?

光声光谱腔拓扑优化分析

2019年 5月 24日

在气体光声光谱学中,光和声用于检测周围环境中有害化合物的浓度。与其他光谱技术相比,光声学由于其检测方案而显示出最高的信噪比——但由于产生的声波通常太弱而不能被麦克风检测到,因此我们使用声学单元来放大信号。Imec 和 KU Leuven 的研究人员正致力于通过拓扑优化来提高这种声学单元的灵敏度。 

如何在封闭空间中建立基源模型

2019年 1月 17日

故事始于阿基米德正在处理的一桩金皇冠诈骗案。当他洗澡的时候突然有了灵感:将一个物体浸入水中,所排出的水量与该物体的体积相同,这样他就可以查出掺有杂质的黄金了。阿基米德高兴地大喊:“找到了(eureka)!”但是会有人会听到这著名的呐喊吗?通过仿真,我们可以评估共振和混响封闭空间(如浴室)的声学效果,及其对基源的响应。

如何建立兼具发射器与接收器功能的压电器件模型

2018年 12月 20日

某些类型的换能器可以同时充当发射器与接收器。我们演示了如何使用两个特征来模拟此类压电器件。

模拟喇叭中的非线性声传播

2018年 12月 4日

当对声学器件建模时,虽然总存在非线性因素,但通常只考虑线性传播就足够了。然而,当在设计中信号幅度达到较高程度时,非线性效应就会显得尤为重要。工程师可以利用 COMSOL Multiphysics® 软件中的非线性声学(Westervelt) 特性,在仿真中加入非线性效应,如指数曲线形喇叭示例所示。

透视固体:光声效应的发现与应用

2018年 8月 30日

1880 年,亚历山大·格拉汉姆·贝尔给他的父亲写了一封信,信中说:“我听到光线在清晰地交谈,我听到光线的笑声、咳嗽声和歌唱声!”他是在谈论自己的最新发明——光线电话机,这也是他生前认为自己“最伟大的发明”。光线电话机并未彻底改变成像领域,但贝尔在研究过程中却有一个意外收获…

克拉尼板如何让你“看见”声音?

2018年 8月 17日

“如果你想知道宇宙的秘密,就用能量、频率与振动来思考。”— 尼古拉·特斯拉 我们能“看见”声音吗?就算不能直接看到,但我们离这个目标已经不远了。通过改变看问题的角度,我们可以了解声学现象的本质。观察声学现象的一种方法是研究称为克拉尼板 的固体介质中的驻波。这是一种特殊技术,可以在板上产生图形,从而揭示声音的物理性质。


第一页
上一页
1–8 of 43
浏览 COMSOL 博客