最新内容

通过仿真研究如何击败巨型怪兽
当你在观看怪兽题材电影时,有没有想过:如果地球上真的存在巨型怪兽会怎样?为了找到保护人类的有效方法,来自卡迪夫大学(Cardiff University)和牛津大学(University of Oxford)的两个数学生物学家使用数学建模对电影中常见的消灭这些巨型怪兽的方法进行了测试。通过对仿真结果的分析,他们还进一步确定了适用于不同地区的最佳策略。 基于种群生态学理论研究如何消灭巨型怪兽 一个科学考察队在探索马里亚纳海沟(Mariana Trench)深处时,意外地从温跃层的裂缝中释放了一只史前巨鲨——巨齿鲨。随后,他们耗费了大量武器、技术和船员来追捕这头巨鲨。在另一个类似的虚构故事中,一头体型庞大的大白鲨用它锋利的牙齿威胁度假岛上的人类……直到主角将它击败送回海底深处。 《大白鲨》(Jaws)的拍摄地点位于美国马萨诸塞州的马撒葡萄园岛(Martha’s Vineyard, Massachusetts),科德角海岸附近。在真实世界中,近年来鲨鱼的数量一直在迅速增长。虽然鲨鱼袭击人类的事件远比电影中展现的要少得多,但当人们看到海滩上出现大量背鳍时,仍然会感到担忧。那么,究竟是什么原因导致这么多的大白鲨靠近海岸呢? 大白鲨。图片由 Olga Ernst 提供自己的作品。通过 Wikimedia Commons 在 CC BY-SA 4.0 下获得许可。 简单来说,海豹数量的减少是导致这个问题的主要原因。在1880 年代到 1960 年代,由于海豹会捕食鳕鱼,新英格兰渔民便将其视为渔业的威胁,因此大量捕杀海豹,直到该地区的海豹数量有明显减少。之后, 1970 年代颁布的《海洋哺乳动物保护法》( Marine Mammal Protection Act)中将杀死海洋哺乳动物定为非法行为,这才使得海豹的数量有所回升…… 以海豹为食的鲨鱼数量也随之增多。 一些人提议捕杀海豹,另一些人提议捕杀鲨鱼,但通过捕杀这种方法可能会使问题变得更加严重。如何预测哪些选择会产生预期结果,哪些选择会带来意想不到的后果呢?其中一种方法就是运用数学方法研究生物学。 种群生态学理论 为了激发人们对真实生活中的生态问题(如大白鲨重返海角)的兴趣,数学生物学家 Thomas Woolley 博士和 Philip Maini 教授将目光转向了惊险刺激的怪兽电影。他们基于《环太平洋》(Pacific Rim)、《侏罗纪世界》(Jurassic World)、《哥斯拉》(Godzilla)和《金刚》(King Kong) 等各种类型的电影所发现的“证据”,将理论种群生态学数学应用于一个研究名为 Kaijus 的巨型怪兽和 Jaegers巨型机器人的虚构场景中。在下文中,您将看到这些典型的证据可以指导他们确定仿真参数。 尽管这一研究所需要考虑的问题有很多,但其基本原理仍围绕着自然界已经发现的理论:种群动态。对于 Woolley 而言,使用电影类比来吸引人们对种群生态学产生关注是一个很好的切入点,他说:“我们如何才能以最好的方式将研究的东西展示出来呢?”人们可以很容易地以僵尸灾难与 疟疾或流感的传播进行比较,因为它们的数学模型是一样的。而对于怪兽题材来说,生物学家们关注于物种间的竞争,捕食者与猎物之间的相互作用,以及人类尝试灭绝物种等。 使用 COMSOL Multiphysics® 软件内置的捕食者-猎物方程等常用工具,可以对生态害虫问题进行研究。该方程的官方名称为 Lotka–Volterra,它从数学上描述了两个物种相互作用的方式,其中一个是捕食者,另一个是猎物,以及它们的种群随时间的变化情况。研究人员以捕食者-猎物的相互作用问题为基础,对上文提到的 Kaijus 巨型怪兽进行了仿真计算。 kaiju 巨型怪兽种群的数学建模 在制定消灭策略之前,生物学家根据以下主要标准为 Kaijus 定义了预测种群规模的参数: 相互作用 行动路径 环境边界 初始分布 怪兽 Kaiju 的设定表明,这些生物不仅具备繁殖能力,当种群数量过多,必须为资源竞争时,它们还会自相残杀。因此,科学家们在模型的交互部分使用了逻辑斯蒂增长微分方程。在现实生活中,这类方程可用于描述从酵母到狼等各种生物种群。 在移动方面,科学家们基于流行电影中这些怪兽的能力,确定它们能在不到一天的时间内从海洋移动到陆地,并根据从环太平洋沿岸到日本(约 1000 英里)所需的 24 小时时间周期来计算它们的移动速度。他们发现,Kaijus 能以大约每小时 40 英里的速度游泳。作为自然力量,Kaijus 倾向于从起点随机移动到最近的陆地。这有助于科学家们根据怪兽密度的扩散和时空演变推导出偏微分方程。此外,他们还考虑了怪兽可以改变方向的情况,尤其是在遇到边界时。 […]

三星采用仿真技术改善扬声器设计
当你听到三星这个名字时,你可能会想到智能手机和电视机。然而,三星还有一个目标是成为排名第一的音响公司。为此,三星美国研究中心声学主管 Allan Devantier 在加州建立了三星音频实验室。

光子晶体的建模与应用
1980 年,Bell Communication Research 的 Eli Yablonovitch 提出了一个思考:如何减少特定频率范围内半导体激光器的损耗?他在透明介质中切割出周期性圆孔,并观察到一定频率范围内的光发生了损耗,无法穿透。

递归和递归定义的几何对象
宽带天线和超材料是两个工程领域,递归定义几何对象是一个有用的建模方式。编写方法使这项任务更容易。

如何自动移除模型几何结构中的小细节
在 COMSOL Multiphysics® 软件中设置仿真时,你有时可能希望用自动方法来移除几何结构中一些能产生不必要的细化网格或质量较差网格的细节。

通过数值模拟优化润滑系统
SIMTEC 的专家使用数值建模设计了一种润滑机械接触,并构建了一个应用程序,用于优化滚动轴承和滑动轴承的润滑使用。

使用不同尺寸设置进行网格划分的最佳方式
提示 1:选择网格划分序列操作的顺序。提示 2:使用单个操作对多个域进行网格划分。请继续阅读全文了解如何确保模型域的高质量网格划分。

地震中建筑物的稳定性分析
1996年,我和20多名二年级的学生挤在南加州的一所小学教室的桌子下面。世界各地的人们都会经常举行这种“地震演习”,尤其是在地球断层线上的地方,以备灾难发生时人们可以及时避难。还有别的应对方法吗?

龙虾壳与防弹衣有什么关系?
在美国新英格兰地区,尤其是缅因州(Maine),以一种外观奇特的美味而著称:龙虾。这种甲壳动物最引人注意的特征之一就是他们拥有极强而且灵活的下腹部,麻省理工学院(MIT)的一组研究人员正在计划以此为灵感开发一种新型防弹衣。 在海的底部,但非食物链的末端 如果你曾经享受过水煮龙虾晚餐的乐趣,那么你就会知道,撬开龙虾的钳子和外壳可能会有些困难,因为它通常需要复杂的开裂方式和其他辅助工具。这种壳在煮熟时会变成红色,有时是蓝色,它可以保护龙虾免受水下掠食者的侵害。 把龙虾翻转并颠倒过来,你会发现它的尾巴的下面是一层清晰的、薄薄的壳。这层壳可能看起来很脆弱并且细腻,但实际上却非常坚固、强韧和灵活。薄薄的一层能保护龙虾在沿海底爬行时,其身体可免受沙尘、岩石和贝壳的侵蚀,也避免了捕食者和那些讨厌的陷阱。同时,它也是一种具有柔韧性和弹性的膜,这一点从龙虾能够任意转动尾巴抵御外侵的能力中得到证明。 这种包含 90% 的水和约 10% 的纤维质几丁质的水凝胶所组成的膜激起了MIT一个研究团队的兴趣(该研究团队与四川大学、哈佛大学的研究人员合作),旨在设计一种新型的、兼具灵活性和保护性的军事防弹衣。他们在 2019 年 4 月的Acta Biomaterialia 上发表了一篇题为 Natural hydrogel in American lobster: A soft armor with high toughness and strength 的论文。尽管这里讨论的研究人员可能使用了其他软件,但我们也可以使用 COMSOL Multiphysics® 进行此进行研究。 龙虾壳的生物力学分析 研究人员首先在柔性膜上进行了各种力学实验。一个有趣的发现是:该膜可以承受剧烈的拉伸和割伤(如沙粒或贝壳碎片)而不会破裂。 该研究团队使用电子显微镜在极端尺度上检查了龙虾柔性膜,发现了另一个有价值的功能:它的外壳与胶合板类似。龙虾柔性膜虽然长度仅为 0.25 毫米,却包含了 10,000 多层几丁质材料。每个单层中的几丁质纤维与其上层成 36° 角。这种特殊的复合结构使这种膜特别坚固,而其所吸收的大量的水对它强大的柔韧性有帮助。 除了新型防弹衣外,该研究团队还预测,研究龙虾的腹膜可能会为软体机器人技术和生物工程学的创新奠定基础。 研究多层结构(例如龙虾的甲壳质膜)的一种可能性是使用复合材料建模。 拓展阅读 从麻省理工学院的新闻报道中 了解有关龙虾壳研究的更多信息:“龙虾的腹部与工业用橡胶一样坚韧” 了解复合材料建模

如何在声学仿真中根据频带自动划分网格
想象一下一架优雅的三角钢琴的弧形琴盖。曲线对应于琴弦的长度,琴弦的长度对应于音高的感知。这种视觉感知体现了声学的一个重要元素:我们对音调的感知是基于对数的。这意味着声学现象涉及到较大的频率范围。

使用仿真分析由轴承不对中引起的旋转机械振动
可以使用结构分析来比较带有对中和未对中轴承的旋转机械轴上的角速度、轴向位移和轴承反力矩。

瞬态问题中的自动时步和阶数选择
这里是对时间依赖求解器登录COMSOL Multiphysics®的介绍,并深入研究离散时间步进方案、最佳时间步长和离散顺序背后的理论。