最新内容
Up 和 Down 算子助力薄结构的分析
模拟含有薄结构的复杂几何时,计算量会相当大,因为为了解析薄结构需要大量的网格单元。COMSOL Multiphysics 提供了专门的特征来模拟薄结构,从而对这类模型实现高效求解,同时保持较高的精度。为建立薄结构并执行后处理,COMSOL Multiphysics 还提供了专用算子,帮助您考虑获得精确结果所需的所有相关参数。
用射线光学解释佩珀尔幻象
2012 年,在一个叫做“科切拉”的加利福尼亚音乐节上,在场嘉宾们被说唱艺术家图派克·夏库尔的登台表演震惊了。原因何在?因为这位著名的音乐家当时已经去世近二十年了。人们通常不假思索地将这种数字表演称为“全息影像”,但实际上这种说法是错误的。这种特技是一个佩珀尔光幻象的例子,我们可以用射线光学来解释。
使用仿真 App 对频域中的磁性材料进行建模
使用有效非线性磁力曲线计算器仿真 App,轻松地将 B-H 或 H-B 曲线转换成有效 B-H 或 H-B 曲线。
借助传热模拟设计太阳能食品干燥机
农产品受到污染后会变为食物垃圾,这已成为全球农业正在面临的一个迫切问题。太阳能干燥机是水果及蔬菜的储藏方法之一,但这类设备首先要正常运行才能维持设备效率。我们可以借助传热仿真来分析太阳能食品干燥机的设计,找出合适的制造材料,包括用于储存太阳能的相变材料 (PCM) 。我们今天将讨论有关太阳能干燥机的仿真研究,仿真目的是优化设计并实现高效的食物存储。
在 App 开发器中制作科赫雪花
波士顿今年的冬天非常暖和,不过我们最终还是迎来了今年的首场降雪。刚刚凝视窗外时,我不禁想到了雪花,然后又想起我们很难用数学描述它们的形成。不过,有种雪花是个例外,我们可以轻松对其进行描述,这就是科赫雪花。现在,我们将讨论如何用 COMSOL Multiphysics 的 App 开发器来创建这一形状。
借助仿真研究鱼类的游动形态
通过研究鱼类的运动,研究人员设计出了各种能在水下环境灵活操控的器械和机器人。开展这类研究时,往往需要对鱼和周围环境进行一个流固耦合(FSI)分析。罗马第三大学的研究人员使用 COMSOL Multiphysics 模拟了鱼类的摆尾式游动法,精确计算了其中的动力学。
自平衡自行车的运动仿真
假设您正在骑自行车,有人从旁边推了你一下。为了迅速让自己保持平衡,你会向同一方向转动自行车的把手防止跌倒。骑车的人出于本能会这样做,但神奇的是,自行车也能做到这一点。现代自行车设计中的自平衡功能,能在其运动失控时很好地保持平衡。让我们一起来看看如何在 COMSOL Multiphysics 中模拟这种效应。
利用形状优化来设计新结构
设计新的结构时,你是否曾经对如何获得最优形状感到迷茫?如果是这样,那么你一定会乐意学习一种非常有用的称为“形状优化”的技术,拥有了这项技术,你的 COMSOL Multiphysics 建模技能就又提高了一步。今天我们将探讨形状优化的概念,并借助一个典型案例来演示其用法。
借助仿真应对腐蚀问题
腐蚀是运输行业面临的最严峻的挑战之一。为了尽量减少腐蚀带来的危害,德国的一家研究机构与著名的汽车制造商——梅赛德斯-奔驰公司联手对汽车铆钉和钣金中发生的腐蚀现象展开了研究。借助 COMSOL Multiphysics 仿真软件,研究人员能够快速研究腐蚀对汽车部件造成的影响。
利用形状优化功能改变模型尺寸
在这篇博客文章中,我们将介绍形状优化的概念,即利用分析敏感性的方法来调整零件尺寸。如果您计划改进单个目标函数,或者修改一组几何参数和约束,可以使用 COMSOL Multiphysics 中的“优化模块”和变形几何 接口来发现最优结构,而无需重新剖分网格。我们来了解一下吧!
TNO 推动 3D 打印中的虚拟材料设计的发展
一直以来,在 COMSOL 博客及科技界中 3D 打印(增材制造)都是一个热门话题。科技创新进一步推动了该项技术的发展,拓展了它在不同领域中的研究、制造及设计应用。借助 COMSOL Multiphysics 的强大功能,荷兰应用科学研究部(TNO)的科技人员正在研究 3D 打印在材料设计领域的应用前景。
陀螺仪动力学的模拟
前几天,我儿子第一次接触到了有关旋转体的运动方程,他回来后问了我几个很有意思的问题。这些问题把我带回了多年前学习力学的时光,当时我也曾有过类似的困惑。在今天的博客 中,我将介绍两个与陀螺仪和陀螺有关的 COMSOL Multiphysics 模型,它们很好地展示了旋转体的一些显著特征。
使用仿真 App 测试钢筋混凝土梁的安全性
参数化混凝土梁仿真 App 是基于一个钢筋混凝土梁的模型。它可以用于在一定的参数范围内轻松计算梁的挠度和轴向应力。
利用全新的相场接口模拟三相流
在 COMSOL Multiphysics 5.2 版本中,对“CFD模块”和“微流体模块”各添加了一个全新的流体流动接口,实现分离三相流的建模。这个流体流动接口中模型可以考虑每两种流体之间的表面张力、与壁的接触角,以及每种流体的密度与黏度等因素。相场法可计算三相流之间的界面形状,以及考虑其与壁之间的相互作用。
谱瑞科技通过 App 提高工作流程效率
人们对触屏设备卓越性能和准确性的要求在不断提高。仿真作为一种快速且极具成本效益的产品开发方法,可以帮助我们实现这一目标。作为仿真工程师,通常,每当修改产品设计时,您的同事都要请您运行仿真测试,并等待您的反馈结果,然后才能将相关信息传达给客户。谱瑞科技(Parade Technologies,前身为“赛普拉斯半导体”)的研究人员发现,创建 App 并将其分配给同事是一种非常有效的方式,既能节省时间,又能更有效地与客户进行沟通。
扬声器发明百年:使用与影响
扬声器能够利用电流进行扩音,自发明以来,给广大听众带来了极大的便利。扬声器也由于不断创新得到人们广泛认可,不断改进设备并积极开发它的新用途。今年是扬声器发明 100 周年纪念,我们将带您一起探索它的悠久历史,以及仿真在推动设计进步中的重要作用。
用于声学仿真的新阻抗边界条件
在开发一个新产品或新功能时,第一步通常是单独了解功能特性。要通过数学建模获得可靠和准确的预测,必须非常详细地指定关键组件、测试设置和边界条件。然而,大多数工程师更愿意关注关键组件,而不是 “不相关”的部分。COMSOL Multiphysics 声学模块中新增的阻抗边界条件可以帮助工程师更准确地指定边界条件。 什么是阻抗边界条件? 在回答上述问题之前,我们先来看看边界条件的定义。引入边界条件意味着 “我们知道在特定的边界上会发生什么”。边界条件会为域内正在求解的控制方程的动力学施加一个额外的约束。这个约束可以是一个已知的振动速度、一个硬声场壁或一个对称平面。施加了额外约束后,COMSOL Multiphysics 会寻找满足声学动力学 和 边界条件的解。 阻抗模型实际上是 “全流动”的模型,即同时对声压和声速施加一个条件,用于定义这两个因素之间的特定关系。在一些理想的情况下,这种关系是已知的。引入一个阻抗条件,本质上是形成一个特定的理想的声学行为。因此,阻抗边界条件 是一个很强大但简单的条件,适用于理想化动力学存在较明显的情况。例如我们熟知的麦克风腔的膜动力学,长管道中的声学,以及多孔表面的平面波声学,等等。 在数学上,阻抗边界条件指定了压力 p 和速度 v 之间的线性关系。 (1) p = Z\textrm{s} v 式中,Z\textrm{s} 是包含动力学的阻抗(SI 单位:Pas/m)。最高级的阻抗模型是在频域中给出的。因此,Z_\textrm{s} 通常是一个与频率有关的参数,Z_\textrm{s}=Z_\textrm{s}(\omega)。 与其指定一个 比阻抗 将速度与每一个点的压力联系起来(如等式(1)),不如使用声学阻抗 Z(SI 单位:Pas/m^3)将作用在一个表面的压力与该表面的体积流量 Q 相关联,即 (2) p = Z Q, \qquad Q = \intA v \ \mathrm{d} \mathbf{r} 最后,我们得到为行波定义的 特征比阻抗Z\textrm{c}。这类阻抗与波在域中移动时每一点的粒子速度和压力有关,这使它们成为对无限域有用的低阶模型。平面行波的关系,Z_\textrm{c}=\rho c 就是有一个典型的例子。 声学模块中的新阻抗模型 COMSOL Multiphysics 声学模块中的阻抗边界条件内置了几个直接可用于一系列声学应用的新模型。所有新增的模型都包含频率依赖性,并且只在频域中可用。(如果要在时域中定义一个阻抗边界条件,可以使用 用户定义的阻抗 边界条件)下表对这些模型进行了简单的描述,包括 压力声学 物理场接口的 阻抗 边界条件下的新增模型。 名称 描述 应用 RCL 集总参数电路元件模型,允许声阻(R)、声顺(C)和声惯(L)的任何组合。 电声: 用于移动设备和消费电子产品的麦克风膜、传感器等模型。 声-固相互作用:弹性材料和固体的机械行为的简单模型。 通用:弹性材料和固体的机械行为的简单模型。 生理学 经过实验验证的人耳和皮肤的模型。 助听器:人耳内使用的助听器的适当边界条件。 头部设备、移动设备、耳机:消费类设备的工作条件的理想声载荷。 人的皮肤: 人体是模拟域的一部分的模拟。 波导末端阻抗 波导两端的声学模型,有法兰盘和非法兰盘配置的选择。 长管道和导管:用于在管道和导管末端截断模拟域。当传播的波是平面波时,阻抗边界条件是很好的近似值。 […]
借助 CFD 建模防止空气感染
医疗相关感染 (HAI, Healthcare-associated infections) 正影响着全球数百万人。HAI 最常见的原因是和源头直接接触,另外空气中传播的细菌也可能造成感染。为预防空气感染,让医院的洁净室更加安全放心,设计出有效的通风系统便是一个重点。有效的通风设计还能降低能耗,节约成本,带来额外收益。卓越设计的第一步是 CFD 建模。
在结构力学仿真中访问外部材料模型
您可能会希望能在结构力学仿真中指定由用户定义的材料模型。COMSOL Multiphysics® 5.2 版本支持您访问来自外部库的材料模型以及由您自己编程的材料函数。本篇博客中,我们将通过执行 Mazars 损伤模型来演示这一新功能。
电池内的电流是逆向流动的吗?
电池放电过程中,电路中的电流从正极流向负极。根据欧姆定律,这个过程中电流与电场强度成正比。但是,电池内部是什么情况?电流是从负电势流向正电势吗?这篇博客,我们将解释电池放电和充电过程中其内部的电势分布情况。
COMSOL Multiphysics 中的粒子计数方法
在 COMSOL Multiphysics 的粒子追踪模拟中,您可以通过 3 种方法对粒子进行计数:在后处理期间、使用累加器或使用粒子计数器功能。
利用具有高佩克莱特数模型中的周期性
在解决化学物质传递问题时,我们常常会处理具有高佩克莱特数的情况,其中对流与扩散之比非常高。我们还可能需要处理结构沿流动方向呈周期性且流场本身呈周期性的问题。这时,我们就可以通过使用 COMSOL Multiphysics 中的广义拉伸组件耦合和前一步解算子来大大减少此类问题的计算需求。
研究用于皮肤癌诊断的介电探针
像介电探针这样的非侵入性工具是一种有希望尽早诊断皮肤癌的方法。了解如何利用仿真来分析它的功能和安全性。
主动噪声控制中的声传播路径仿真
今天,Lars Fromme 将以比勒费尔德应用科学大学 (FH Bielefeld University of Applied Sciences)教授的身份回归我们的博客。 现代世界中,在机器的噪声下工作已经发展成为一个职业安全问题。为了保证工人的安全,我们可以借助仿真来开发一些低成本的噪声控制方案。比勒费尔德应用科学大学的研究人员决定借助 COMSOL Multiphysics 仿真软件来模拟声传播路径,希望藉此实现噪声控制。