每页:
搜索

最新内容

标注图在二维和三维绘图组中的运用

2016年 2月 3日

在绘图组中添加标注图,可以非常简便地在仿真结果绘图中标注名称、注释以及指定位置求得的物理量数值。在本篇博客文章中,我们将以热沉模型为例探讨如何添加标注图。

强大的批处理扫描功能

2016年 2月 2日

你是否曾经通宵运行大量的参数化扫描,第二天早上却发现参数化求解器仍在运行?你或许希望先查看已计算好的参数解,同时等着最后几个参数的收敛。批处理扫描 功能是解决上述问题的有效方法,计算好的参数化解会自动保存为文件,便于打开进行可视化及后处理。

借助传热模拟实现安全的可穿戴技术设计

2016年 2月 1日

消费及医学类可穿戴技术的热度正逐年上升。这类设备旨在实现持续使用,如果设计不合理,设备产生的热量就会导致故障并可能烧坏设备。为避免对设备使用者造成伤害,在设计产品时必须将传热的影响考虑在内。COMSOL Multiphysics 的仿真功能使它成为了可能。

计算搅拌器和旋转机械中的自由液面

2016年 1月 26日

搅拌器或搅拌反应器中的叶轮平稳搅动时,液体表面会产生波动。如果此波动的高度远小于容器中流体的高度,那么可以在一个专门的求解步骤中根据速度场显式地计算出自由液面的形状和高度。最新版 COMSOL Multiphysics 的“搅拌器模块”中包含了一个“稳态自由表面”特征,专门用于这类计算量不大的运算。

借助仿真模拟流行病的传播

2016年 1月 25日

我想您一定记得上次因流感而卧床的情景。流感俗称感冒,这对我们而言可能只是一次很不愉快的体验,但其实它每年还会造成大量的人员伤亡。现在,公共卫生官员正借助数学仿真技巧研究流感和其他传热性疾病,希望能预测它们的传播,并据此做出明智的公共卫生决策。

生物组织射频消融技术的仿真研究

2016年 1月 20日

生物组织射频消融是一种利用针对性的加热来实现各类医疗目标的治疗方法,其应用领域包括杀死癌细胞、促使胶原收缩拉紧和减轻疼痛等。这种方法通过直接向人体组织施加中高频交流电,使消融电极周围的一小块区域温度升高。我们可以借助 COMSOL Multiphysics 及其 AC/DC 和“传热”模块来模拟这一过程。在这篇博客文章中,我们将介绍射频消融手术所涉及的一些关键概念。

蛋白质吸附:间歇式反应器和空间依赖性建模

2016年 1月 19日

研究系统的化学动力学时,通常会使用完全混合间歇式反应器假设,并使设计的实验一直保持理想的混合条件。这种假设包括完全混合(理想釜式反应器)和非完全混合(理想塞流反应器)。然而在实际应用中,反应器很难达到理想状态,因此空间依赖性建模对于理解和优化化学反应器至关重要。下面我们将详细探讨反应器模型的开发,先从一个简单的完全混合示例开始。

计算普通光源的发射光谱

2016年 1月 14日

我很喜欢一年前购买的飞利浦 Hue照明系统。该系统允许使用智能手机为多达18个灯泡设置数百万种不同的颜色和数千种亮度级别。你也可以通过编程让系统在你接近住处时自动开启,这被称为“地理定位”,或者在一天中的特定时间自动开启。那么,与其他照明技术相比,它的光质量如何呢? 家庭照明系统 飞利浦Hue系统的工作原理是改变输出的蓝光、绿光和红光量,可以直接从智能手机上进行设置。如果对某种特定颜色的光很敏感,就可以简单地避开它。你还可以根据自己的心情设置灯光,以帮助集中精力,为自己充电、阅读或放松心情。该系统存在一种“集中”模式,该模式优先输出更多的蓝光,以增强人体集中的能力。在晚上放松时,我使用“日落”模式,该模式会提供更多的红色和橙色色调。 在使用该系统一段时间后,我还发现了一些长期优势: 与使用老式荧光灯相比,我晚上更容易入睡。 自从升级系统以后,我的电费每月减少了约21美元。这是因为12 W的发光二极管(LED)灯泡可以产生与60 W白炽灯泡相同的光输出。   比较我公寓里的一些照明系统的设置。左:柔和的白色。中:红色。右:蓝光。   我曾试图说服我的父母购买该系统,但我的推销说辞并未打动他们。我最近给他们买了这个系统作为圣诞礼物,当我为他们演示该系统时,我听到的第一条评论是:“哇,光感如此自然。”这促使我思考为什么会这样,是否可以使用 COMSOL Multiphysics® 软件研究其中蕴含的基础物理学。简单来说答案就是:高效LED灯泡产生的发射光谱。通过比较自然光的发射光谱与白炽灯、荧光灯和LED灯泡产生的光谱,我们可以更好地理解这种现象。 在 COMSOL Multiphysics 中绘制发射光谱 下图绘制了自然光、白炽灯、荧光灯和LED灯泡的发射光谱。如你所见,不同灯光的发射光谱是非常不同的,它们中的任何一个都无法完美地复制自然光。 自然光 让我们从太阳光到达地球表面开始。目前还没有办法用人造光源再现自然光的发射光谱。但是,可以使用 光导管 将进入的自然光重新定位到地下(如地铁站中)。其中一个例子就是将光定位到了柏林的地下火车站。一根光导管从车站上方伸出(如下方左图所示)并收集光线,该光线通过一根特殊的管道传输并进入地下车站(如下方右图所示)。   左:柏林火车站入口处的光导管。图片由 Dabbelju 自己的作品制作。通过 Wikimedia Commons 在 CC BY-SA 3.0 下获得许可。右:光导管将光传输到地下终端。图片由 Till Krech-Flickr提供。通过 Wikimedia Commons 在 CC BY 2.0下获得许可。 白天,光导管为火车站提供了更自然的照明。这种方法一个明显的缺点是它无法在夜间工作,因此需要一种模仿自然光的人造光。 自然光的发射光谱通常在光谱的可见部分,且遵循普朗克分布,如下图所示。尽管强度在浅蓝色区域(约460 nm)处最高,但没有一种颜色比其他颜色更突出。 从太阳到达地球表面的可见光的发射光谱。 白炽灯泡 白炽灯泡里含有钨丝,当电流通过时,钨丝会被电阻加热。在2000 K(约1727摄氏度)左右的温度下,灯丝开始发出可见光。为了防止钨丝烧毁,灯泡里要充满一种气体,通常是氩气。灯丝中产生的热量通过辐射、对流和传导传递到周围环境中。白炽灯泡发出的红光比例大于自然光。发射甚至延伸到电磁波谱的红外部分,这浪费了能量且降低了灯泡的整体效率。   一个普通白炽灯泡可见范围内的发射光谱。 荧光灯泡 荧光灯通常由一根长玻璃管组成,该玻璃管中包含有低压汞和稀有气体(如氩气)的混合物。在该管内部,产生了非平衡放电(等离子体)。这意味着电子温度与周围气体混合物的温度不同。电子温度可以超过20,000 K(约19727摄氏度),但是气体温度保持在相对接近室温300 K(27摄氏度)的水平上。由于等离子体处于非平衡状态,电子碰撞反应会改变气体混合物的化学成分,以碰撞过程控制的方式。这些碰撞会产生电子激发的中性粒子,这些中性粒子随后会产生特定波长的光子自发辐射。 可见光是由两种机制产生的:直接由放电产生的光发射,或由激发管表面的磷光体产生的光发射。荧光灯通常会给患有称为 Irlen 综合征视觉障碍的人带来麻烦,而且长时间暴露在荧光灯下时,人们经常会抱怨头痛和偏头痛。 如下图所示,荧光灯光源的发射光谱看起来很奇怪。这种量子化或者是由于等离子体的直接发射,或者是由于荧光粉的作用。但对人眼来说,发出的光看起来仍然是白色的。和白炽灯泡一样,荧光灯泡的效率也很低,因为需要维持等离子体,而且它发出的辐射在不可见的范围内。 一个普通荧光灯的发射光谱。 LED灯泡 LED正在给照明行业带来一场革命,因为与传统的白炽灯技术相比,LED灯的发光效率更高且耐用性更强。普通的家用LED灯泡在发光时所需的功率只有同等亮度白炽灯的10%到20%。LED灯泡的使用寿命超过25,000小时,相比之下白炽灯泡只有1000小时。 LED具有比白炽灯泡更高的效率,因为它们以完全不同的原理发光。LED(发光二极管)是一种半导体器件,当导带中的电子与价带中的空穴通过辐射复合跃过带隙时发光。与白炽灯泡不同,LED可以在非常窄的波长范围内发光。 最初,红色、绿色和黄色 LED 在20世纪50年代和60年代发展起来。然而,正是 蓝色LED 的发明导致了新型高效白光光源的产生。此类LED发出的蓝光可用于刺激LED外壳周围的磷光体层发出更宽的光谱,或者可直接与红色和绿色LED组合以产生白光。 如下图所示,黄色荧光粉设置的LED光谱更接近自然光。蓝光比白炽灯要多,并且几乎所有能量都在可见光谱范围内发射。 一个普通 LED 灯泡在温暖白色环境下的发射光谱。 组合光源 不同的发射光谱绘制在下面同一个轴上。尽管没有一个灯泡能够完全重现自然光,但 LED 灯泡显然是最好的近似光源。所有的发射都在可见光范围内,这使得设备非常高效。 来自自然光、白炽灯、荧光灯和 LED 灯泡的发射光谱。 通常,白炽灯和荧光灯有固定的光输出,还有固定发射光谱的LED灯泡。通过绘制不同光源的发射光谱,我们可以推断出LED灯泡最接近自然光。 探索更多的光源模拟方法 正如我们在这篇文章中所看到的,有许多不同的方法来创建人造光。上面描述的所有方法都可以使用带有半导体、等离子体、传热或射线光学模块的COMSOL Multiphysics上模拟。 阅读博客文章: 创建波长可调LED仿真应用 建模灯泡,所有形式的热传递 Vdara酒店的腐蚀性表面生成分析 下载教程模型: 无极灯 透明光管 PHILIPS是 […]


浏览 COMSOL 博客