每页:
搜索

最新内容

空间圆弧框架的不稳定性评估

2015年 2月 18日

从法国卢浮宫到瑞典球形体育馆,许多现代建筑都将空间框架作为建筑的基础。设计空间框架时,我们需要评估其中的不稳定性风险。

对周期性热负荷进行建模

2015年 2月 16日

我们经常收到关于周期性或脉冲性热负荷的建模问题。也就是一个热负荷在已知时间内反复启用和停用的情况。使用COMSOL Multiphysics 中的事件 接口,我们可以轻松、准确并且高效地对这种情况进行建模。这篇文章,我们将为您介绍这种建模技术,它适用于多种类型的瞬态仿真,在这些仿真中,负荷的变化发生在已知时间内。 编者注:这篇博客于 2022 年 10 月 4 日更新,以反映更新后的建模功能。 瞬态仿真简介 首先,我们先从概念上来简单了解一下在 COMSOL Multiphysics 中求解瞬态问题时使用的隐式时间步进算法。这些算法根据用户指定的容差来选择时步。虽然这允许软件在求解中出现渐变时采取非常大的时间步进,但缺点是使用太宽的容差会跳过某些瞬态事件。 为了理解这一点,我们以一个普通微分方程为例来说明: \frac{\partial u}{\partial t} = -u + f(t) 其中,强制函数 f(t) 是一个从 ts 开始,在 te 结束的矩形单位脉冲。给定初始条件 u0=1,我们可以用解析法或数值法在任意时间长度上求解这个问题。 如上图所示,在解析解的图中,当激励函数为零或一时,我们可以观察到解呈指数下降和上升。为了求解这个问题,我们使用默认的瞬态求解器,来看看两个不同相对容差的数值解: 相对容差为 0.2 和 0.01 时的数值解(红点),并与解析结果(灰线)进行了比较。 从上面的图中我们可以看到,非常宽松的相对容差 0.2 并不能准确描述负荷的变化。当设置比较严格的相对容差 0.01 时,得到了合理的解。我们还可以观察到,点的间距显示了求解器所使用的不同时间步进。很明显,在解变化缓慢的情况下,求解器采用了较大的时间步进,而在启用和停用热负荷时采用了较小的时间步进。 然而,如果容差设置得太宽松,当热负荷的宽度变得非常小时,求解器可能会完全跳过热负荷的变化。也就是说,如果 ts 和 te 移动到相互非常接近时,对于指定的容差来说总热负荷太小。当然,我们可以通过使用更严格的容差来缓解这种情况,但还有一个更好的选择。 我们可以通过使用显式事件 来避免收紧容差,显式事件 是一种让求解器知道它应该在一个指定的时间点评估解的方法。从这个时间点向前,求解器将继续像以前一样,直到达到下一个事件。让我们看看上述问题的数值解决方案,在 ts 和 t_e 时间段内采用显式时间,以 0.2 的相对容差进行求解,这是一个非常宽松的容差: 使用 显式事件时的数值解,即使采用非常宽松的相对容差 0.2,与解析结果相比也相当吻合。在远离事件的位置,要采取大的时间步进。 上图说明,每当启用或停用负荷时,显式事件 功能就会产生一个时间步进。宽松的相对容差允许求解器在解逐渐变化时采取大的时间步进。在事件发生后立即采取小的时间步进,以使解的变化得到良好的求解。因此,我们既能很好地解决热负荷的启停问题,又能采取大的时间步进,使整体计算成本最小。 现在,我们已经介绍了相关的概念,接下来,我们来看看如何实现这些显式事件。 一个传热的例子 我们来看一个 COMSOL Multiphysics 案例库中的例子,并稍作修改以包括周期性热负荷和事件 接口。在硅晶片激光加热例子中,激光被建模为分布式热源,在旋转的硅晶片表面来回移动。 激光热源本身沿着中心线在晶圆上来回穿越,周期为 10s。为了尽量减少加热过程中晶圆上的温度变化,我们希望在热源位于晶圆中心的时候周期性地关闭激光。 为了建立这个模型,首先我们引入一个事件接口,并在其中定义一个离散状态 变量。这个变量的名字是 ONOFF,它的初始值是 1,如下面的截图所示。 事件接口中的 离散状态屏幕截图。 我们可以使用离散状态 变量来修改代表激光热源的施加热流,如下图所示。 使用 […]

等离子体的热力学平衡

2015年 2月 10日

您对使用 COMSOL® 软件模拟等离子体感兴趣吗?了解不同等离子体类型以及何时使用等离子体模块中的每个可用接口。

弱形式方程的离散化

2015年 2月 9日

本博客是弱公式化系列博客的后续部分。在之前的博客中,我们使用 COMSOL Multiphysics 软件设置并求解了一个典型的弱形式方程,并借助一些简单的物理参数验证了结果。今天我们将深入了解这些方程是如何被离散并数值求解的。

彩色玻璃背后的科学

2015年 2月 6日

虽然彩色玻璃的设计现在变得越来越绚丽,但它的制造技术自出现以来就基本没什么变化。本篇博客中,我们除了讨论这一艺术形式之美,还将研究隐藏在它制造背后的科学。

为什么汽车蓄电池在寒冷天气中表现欠佳

2015年 2月 5日

如果不提前采取防范措施,那么在冬天寒冷的早晨发动汽车将会是一段令人不愉快的经历。发动机无法启动通常是由于蓄电池发生故障,为什么汽车上的蓄电池比其他零件更加敏感呢?答案就在于蓄电池具备的将化学能转换为电能的能力,当冬天生成的热量最少且低温下获得的热能较少时,这一转换能力就变得很差。

仿真改进了双圆锥天线的设计

2015年 2月 4日

许多需要进行电磁兼容性合规测试的产品都采用了双圆锥天线。这类天线具备重要的宽带特性,有助于进行此类测试。我们将探讨如何通过仿真来确保这一点。

多相催化建模方法

2015年 2月 3日

获取异质催化的介绍,异质催化反应中化学物种的主要步骤,吸附-解吸模型,表面反应,以及更多内容…

特殊绘图类型:极坐标、远场和粒子追踪绘图

2015年 2月 2日

在最近的后处理系列博客中,我们演示了流体、力学、化工及电气应用中常用的几种绘图类型。在本系列接下来的几篇博客中,我们会介绍一些不太常用的、仅针对特定应用的绘图类型,还将介绍其他一些您可以用于改进图形化显示的工具。本篇博客中,我们将重点介绍极坐标图、远场图和粒子追踪图。

如何计算声辐射力

2015年 1月 29日

你知道吗,物体实际上可以被声音移动?这种效应被称为声辐射,它是一种可在 COMSOL® 软件中分析的声致伸缩现象。

使用完美匹配层和散射边界条件求解电磁波问题

2015年 1月 28日

求解波动电磁场问题时,您可能会希望模拟一个包含开放边界的域,即电磁波通过计算域的边界时不会产生任何反射。针对这一问题,COMSOL 提供了几种解决方案。今天,我们将分析如何使用散射边界条件和完美匹配层来截断域,并讨论它们各自的适用范围。

如何对半导体器件执行三维仿真分析

2015年 1月 26日

在改进半导体器件研发流程和制造技术的过程中,仿真具有巨大的应用潜力。通过仿真分析可以减少设计过程中所需的试验和制造次数。由于必须解决器件的长度尺度问题,以及半导体物理现象的非线性特性,对三维半导体器件进行建模具有一定的挑战性,往往需要进行计算量非常大的仿真工作。

介电泳分离

2015年 1月 23日

电泳是一种通过电场来控制电中性粒子的运动的现象。了解如何在直流和交流电场中模拟这种效应。

通过组件设计提高光学系统的功率

2015年 1月 21日

自适应光学用于提高光学系统的功率,消除光学介质带来的障碍。请看例子并学习如何为自适应光学系统建模。

模拟洗衣机中的振动和噪声

2015年 1月 15日

由于洗衣机内的衣物分布不均匀,会产生我们能察觉到的振动和噪声。要优化这类常见家用设备的设计,对运动和声音背后动力学的模拟会是一项非常有价值的工具。

使用广义拉伸算子建立旋转模型

2015年 1月 14日

您可以使用 COMSOL Multiphysics® 中的广义拉伸算子来模拟暴露在载荷下的旋转物体。现实世界中一个常见的例子是旋转加热食品。

振动悬臂梁的磁阻尼

2015年 1月 12日

把一个振动的导电物体放在静态磁场中会发生什么?磁场将在运动的固体中诱发电流,使运动的电荷产生一个作用力。力作用的结果是抵抗结构的运动,从而产生阻尼。 建模实例:振动悬臂梁的阻尼 我们以一个位于磁场中的悬臂梁为例来说明,如下图所示。假设在梁的自由端施加了力学激励,作用是使梁以恒定的频率振动。这个激励很小,因此位移也将很小。我们还将假定材料为线弹性材料,因此可在频域中对此力学问题进行建模。但是,即使位移很小,速度(即位移的时间导数)可能相当大。 从电磁问题的角度分析,我们假设梁的位移很小,也就是说,磁场线不会随着梁的振动而改变。因此,可以在梁处于未扰动位置时计算磁场。考虑一个由梁和载流导线组成的建模域。建模域周围有一个空气盒包围建模空间,假定空气盒被一个良好的电导体截断,也就是说,系统位于一个金属盒内。 现在,尽管梁本身被假定为具有无限小的位移,但它的速度是很重要的,特别是在高振动频率下。一个在静态磁场 \mathbf{B} 中运动的良导体将产生感应电流 \mathbf{J}i,由以下公式计算: {\mathbf{J}{i}} = \sigma\mathbf{v} \times {\mathbf{B}} 其中,\sigma是材料的电导率,\mathbf{v} 是导体的速度。由于磁感应的影响,将有一个额外的源于感应场的电流密度贡献, {\mathbf{J}{j}} = \sigma{\mathbf{E}} 因此,影响导体的总电流为 {\mathbf{J}} = {\mathbf{Ji}} + {\mathbf{J_j}} =\sigma{\mathbf{E}}+ \sigma\mathbf{v} \times {\mathbf{B}} 假设感应场与静态磁场相比相对较小,因而二次感应效应可以忽略。梁中的电流将与载流导线引起的静态磁场相互作用,并对导电梁施加一个局部力(洛伦兹力): {\mathbf{F = J \times B}} 这个力的作用将与材料运动速度相反,导致振动的阻尼产生。损失的振动能量以欧姆热损失的形式消散: \mathbf{Q} = |\mathbf{J}|^2/ \sigma 系统的建立:振动导电横梁临近一根大直流载流导线。 将磁场、电场与固体力学相耦合 那么,磁场是否为梁提供了明显的阻尼呢?让我们使用 COMSOL Multiphysics 软件及其附加的 AC/DC 模块和结构力学模块来寻找答案。(注意,我们可以用声学模块或 MEMS 模块来代替结构力学模块。) 在我们的建模示例中,假设以下情况为真: 线路中的驱动电流和由此产生的背景磁场在一段时间内保持不变。 梁的结构位移相对很小 相对于背景场而言,由感应电流产生的磁场很小。 该材料具有各向同性和线性特性 在这些假设下,我们可以提出以下问题:由于不同的背景磁场强度,振动的金属梁将承受多少阻尼? 为了回答这个问题,我们需要将两个磁场 接口和一个固体力学 接口进行耦合。 该模型的建立分为两个步骤。首先,我们使用稳态研究 计算悬臂梁旁边的载流导线引起的静态磁场。第二步,将结构振动和静态磁场的共同作用引起的电流作为外部电流密度,输入到第二个时谐磁场分析中。在这里,使用固体力学 接口和频域 研究,求解悬臂梁的(小)位移所耦合的谐波产生的电流,用于一系列的谐波激励载荷。我们可以通过用户定义的方式定义感应电流和洛伦兹力。这个力矢量可以作为结构问题的主体载荷来施加。此外,磁场的强度可以通过参数化扫描研究来改变。这可以观察到不同磁场强度下磁阻尼对振动梁的影响。 首先,我们可以模拟由于流经导线的电流而产生的磁通量。随着通过电线的电流增加,磁通量的大小也会增加。 由流经导线的恒定电流而产生的磁场。 接着,我们绘制了不同磁场强度下悬臂梁的尖端位移与结构激励频率的关系。如图所示,悬臂梁受强磁场作用有明显的阻尼振动。 不同磁场强度下的尖端位移与激励频率的关系。 模型下载 从 COMSOL 模型库下载文中介绍的振动导电固体的磁阻尼教程模型,了解如何建立这个模型。

非线性弹性材料简介

2015年 1月 9日

非线性弹性材料模型的例子:Ramberg-Osgood, Duncan-Chang, Hardin-Drnevich, Power law 等。文中讨论了如何在你的分析中应用非线性弹性材料。

建筑中的多物理场仿真

2015年 1月 7日

设计新建筑时,建筑师们不仅要考虑它的艺术审美性,还要兼顾结构的牢固性,所以说,建筑师们不能仅仅是艺术家。在现代建筑设计中,人们非常关注环境是否舒适以及能源效率情况。从设计概念的提出到最终定稿,其间要解决一系列的物理问题,21世纪,建筑师们或许可以转向多物理场软件来获得帮助。

在 COMSOL Multiphysics 中执行弱形式

2015年 1月 6日

这篇博客是弱形式系列博客的组成部分,旨在帮助用户在最小的先决条件下理解弱形式。在第一篇博客中,我们学习了弱形式的基本概念。所有方程停留在解析形式。今天我们将使用 COMSOL Multiphysics 仿真软件来从数值上求解上述方程。我们在此强烈建议您打开 COMSOL 软件,随我们一起操作。

通过微波谐振腔探测暗物质轴子

2015年 1月 5日

1977 年,人们提出轴子这一类基本粒子是强电荷宇称(CP)这一理论粒子物理学问题的解决方案。之后,人们发现该粒子其实可能是暗物质的一个组成部分。目前许多实验活动正在开展,都希望最终能探测到轴子。本篇博客中,我们将聚焦轴子暗物质实验(ADMX),该实验尝试通过微波谐振腔来达成这一目标。

使用传热模块计算角系数

2015年 1月 2日

对在 COMSOL® 中计算角系数感兴趣?有一些用于后处理的算子与用于生成表面与表面方程的算子相对应。阅读博客,了解更多内容。

消费电子产品中的电容触摸屏仿真分析

2015年 1月 1日

手机、电子书阅读器、计算机,甚至腕表类的消费电子产品中都用到了触摸屏技术。大量触摸屏中都用到了某种形式的电容传感。让我们来看一下如何使用 COMSOL Multiphysics 的 AC/DC 模块来分析这类电容传感器吧。

借助生物力学模型评估人体对振动的响应

2014年 12月 31日

根据其大小及频率,振动可能会让人感到不适甚至疼痛。当置身于振动环境中时,我们自然能感受到它的影响。如果能绘制出各个人体部位对它的响应,会不会很有意思呢?现在,您可以通过博客中的多体模型来模拟人体对振动的动态响应。


浏览 COMSOL 博客