带标签的博客文章 技术资料

从测量中获取结构力学的材料数据(第二部分)
在本系列的第一篇博客中,我们讨论了将测量材料数据转化为本构模型时的一些注意事项;并详细介绍了超弹性材料。今天,我们将讨论如何使用非线性弹性和弹塑性材料,并将介绍一种您可以直接在 COMSOL Multiphysics 中使用您的测量数据的方法。

如何创建仿真 App:以喇叭天线模型为例
假如能让非专业人士独立运行您的多物理场仿真,您会愿意吗?回答毫无疑问是肯定的,这不仅能节省您的时间,还可以帮助他们便捷地受益于您的专业成果。现在,将仿真转化为简便易用的定制化仿真 App 已经成为了现实。这篇博客文章将解释研发人员为什么应该创建仿真 App 以及如何进行创建,我们将利用新发布的“波纹状圆形喇叭天线模拟器”演示 App 来对此进行展示。

如何模拟三维旋转机械
电动机械是现代工业社会的重要支柱。在这类种类繁多的机械设备中,发电机或电动机一类的旋转机械应用最为广泛。COMSOL Multiphysics 中的旋转机械,磁物理场接口即旨在模拟这些系统。请跟随我们一起探讨旋转机械的模拟过程,并了解使用此功能详细的最佳做法。

借助 COMSOL® 仿真 App 执行弱形式
在之前的弱形式系列博客中,我们对弱形式方程进行了离散,希望得到可用于求解我们简单示例问题中未知系数的矩阵方程。按照博客“在 COMSOL Multiphysics 中执行弱形式”中的步骤操作,我们将能在 COMSOL Multiphysics® 软件中执行该方程,并能加入其他步骤来检查矩阵。我们还发现可以借助 COMSOL® App 更轻松地实现所有相关矩阵的同时展示,并能在同一个屏幕上按类排列。

如何选择 CAD 数据处理模块?
COMSOL Multiphysics® 软件提供了多个附加模块来处理外部 CAD 及 ECAD 数据。这些模块支持在 COMSOL Multiphysics 分析工具与 CAD 和 ECAD 设计软件之间进行单向或双向数据传输。本篇博客将介绍这些模块的功能及其应用的必要性。

借助 Beer-Lambert 定律模拟激光与材料的相互作用
高强度激光入射在部分透明材料上会在材料本身沉积功率。如果能借助 Beer-Lambert 定律描述入射光的吸收,我们就可以通过 COMSOL Multiphysics 的核心功能来模拟能量的沉积。本博客将介绍如何模拟吸收率受温度影响的材料对入射光的吸收,以及随之对材料产生的加热。

使用布辛涅斯克近似模拟自然对流
今天,我们将比较的 布辛涅斯克近似 与完整 纳维-斯托克斯方程 在自然对流问题中的应用。本文介绍了如何在 COMSOL Multiphysics 软件中实现布辛涅斯克近似,以及使用布辛涅斯克近似的潜在优势。 应用示例:方形空腔中的自然对流 在下面的示例中,我们将使用一个耦合了纳维-斯托克斯方程和传热方程的模型来模拟带有加热壁的方形空腔中的自然对流。空腔左壁和右壁的温度分别为 293K 和 294K;顶壁和底壁是隔热的;流体是空气,侧面的长度为 10cm。 我们将使用此模型比较三种不同建模方法的计算成本: 求解完整的纳维-斯托克斯方程(方法1) \rho \left( \frac{\partial \mathbf{u}} {\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \nabla \cdot ( \mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}) -\frac{2}{3} \mu (\nabla \cdot \mathbf{u})\mathbf{I}) + \rho \mathbf{g} 用压力变换求解完整的纳维-斯托克斯方程(方法2) \rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla P + \nabla \cdot ( \mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^{T})- \frac{2} {3}\mu (\nabla \cdot […]

我们能听出鼓的形状吗?
半个世纪前,Mark Kac 做了一个有趣的讲座,讲座内容基于十年前他从 Bochner 教授那听到的一个问题:“我们能听出鼓声的形状吗?”他把讲座的重点放在特定的(待定)一组特征值能否确定振动鼓膜形状。特征值问题已经解决了,在这里,我们通过考虑一些有趣的物理效应,探索这个问题中“听”的部分。

借助分割技巧改进网格剖分
通常,有限元建模中最乏味的一步便是将 CAD 几何细分为有限元网格。这一步通常称为网格剖分,该操作有时可完全自动化。但更多时候,细心的有限元分析人员希望能通过半自动化的方式来创建网格。虽然这将涉及更多操作,但却能带来一些相当明显的优势。本篇博客中,我们将探讨一个非常重要的手动网格剖分技巧:几何分割的概念。

用于电磁波问题的端口与集总端口
当使用 COMSOL Multiphysics 软件在频域模拟波动电磁场问题时,有几个选项能够进行无反射传播电磁波的边界模拟。本文我们将讨论 RF 模块的‘集总端口’边界条件,以及 RF 模块和波动光学模块中的‘端口’边界条件。

感应炉模拟小技巧
今天,我们很荣幸地大家介绍一位新的特约作者,来自 SIMTEC 的 Vincent Bruyere,他将分享对感应炉仿真的深入见解。 从食品烹饪到制造业,感应加热在许多应用中都扮演着重要的角色。该非接触式加热因其精确和高效而备受重视。在本篇特约博客中,我将介绍如何在 COMSOL Multiphysics 中建立一个感应炉模型,并将演示如何利用它来提升您的设计。

使用 COMSOL Multiphysics 对室内声学进行建模
在室内声学中,重点是解决封闭空间的声音质量。我们向您演示如何在 COMSOL Multiphysics 中建立这些声学模型。

从测量中获取结构力学的材料数据
我们经常碰到这类问题:“能否直接在 COMSOL Multiphysics 中输入测量得到的应力-应变曲线。”在这个新的博客系列中,我们将详细介绍如何处理及解读从测试中获取的材料数据;还将解释为什么简单输入应力-应变曲线的做法并不可取。

使用事件接口模拟温控器
温控器 装置的作用是感测系统温度,并基于温度信息控制系统中的加热器和冷却器,使系统温度始终接近期设定值。温控器种类众多,我们今天只重点介绍一种利用两个设定点自动打开或停止加热器的温控器。这种温控器被称为开关式 控制器或继电式 控制器,我们可以使用 COMSOL Multiphysics 的事件 接口对其进行模拟。

对周期性热负荷进行建模
我们经常收到关于周期性或脉冲性热负荷的建模问题。也就是一个热负荷在已知时间内反复启用和停用的情况。使用COMSOL Multiphysics 中的事件 接口,我们可以轻松、准确并且高效地对这种情况进行建模。这篇文章,我们将为您介绍这种建模技术,它适用于多种类型的瞬态仿真,在这些仿真中,负荷的变化发生在已知时间内。 编者注:这篇博客于 2022 年 10 月 4 日更新,以反映更新后的建模功能。 瞬态仿真简介 首先,我们先从概念上来简单了解一下在 COMSOL Multiphysics 中求解瞬态问题时使用的隐式时间步进算法。这些算法根据用户指定的容差来选择时步。虽然这允许软件在求解中出现渐变时采取非常大的时间步进,但缺点是使用太宽的容差会跳过某些瞬态事件。 为了理解这一点,我们以一个普通微分方程为例来说明: \frac{\partial u}{\partial t} = -u + f(t) 其中,强制函数 f(t) 是一个从 ts 开始,在 te 结束的矩形单位脉冲。给定初始条件 u0=1,我们可以用解析法或数值法在任意时间长度上求解这个问题。 如上图所示,在解析解的图中,当激励函数为零或一时,我们可以观察到解呈指数下降和上升。为了求解这个问题,我们使用默认的瞬态求解器,来看看两个不同相对容差的数值解: 相对容差为 0.2 和 0.01 时的数值解(红点),并与解析结果(灰线)进行了比较。 从上面的图中我们可以看到,非常宽松的相对容差 0.2 并不能准确描述负荷的变化。当设置比较严格的相对容差 0.01 时,得到了合理的解。我们还可以观察到,点的间距显示了求解器所使用的不同时间步进。很明显,在解变化缓慢的情况下,求解器采用了较大的时间步进,而在启用和停用热负荷时采用了较小的时间步进。 然而,如果容差设置得太宽松,当热负荷的宽度变得非常小时,求解器可能会完全跳过热负荷的变化。也就是说,如果 ts 和 te 移动到相互非常接近时,对于指定的容差来说总热负荷太小。当然,我们可以通过使用更严格的容差来缓解这种情况,但还有一个更好的选择。 我们可以通过使用显式事件 来避免收紧容差,显式事件 是一种让求解器知道它应该在一个指定的时间点评估解的方法。从这个时间点向前,求解器将继续像以前一样,直到达到下一个事件。让我们看看上述问题的数值解决方案,在 ts 和 t_e 时间段内采用显式时间,以 0.2 的相对容差进行求解,这是一个非常宽松的容差: 使用 显式事件时的数值解,即使采用非常宽松的相对容差 0.2,与解析结果相比也相当吻合。在远离事件的位置,要采取大的时间步进。 上图说明,每当启用或停用负荷时,显式事件 功能就会产生一个时间步进。宽松的相对容差允许求解器在解逐渐变化时采取大的时间步进。在事件发生后立即采取小的时间步进,以使解的变化得到良好的求解。因此,我们既能很好地解决热负荷的启停问题,又能采取大的时间步进,使整体计算成本最小。 现在,我们已经介绍了相关的概念,接下来,我们来看看如何实现这些显式事件。 一个传热的例子 我们来看一个 COMSOL Multiphysics 案例库中的例子,并稍作修改以包括周期性热负荷和事件 接口。在硅晶片激光加热例子中,激光被建模为分布式热源,在旋转的硅晶片表面来回移动。 激光热源本身沿着中心线在晶圆上来回穿越,周期为 10s。为了尽量减少加热过程中晶圆上的温度变化,我们希望在热源位于晶圆中心的时候周期性地关闭激光。 为了建立这个模型,首先我们引入一个事件接口,并在其中定义一个离散状态 变量。这个变量的名字是 ONOFF,它的初始值是 1,如下面的截图所示。 事件接口中的 离散状态屏幕截图。 我们可以使用离散状态 变量来修改代表激光热源的施加热流,如下图所示。 使用 […]

等离子体的热力学平衡
您对使用 COMSOL® 软件模拟等离子体感兴趣吗?了解不同等离子体类型以及何时使用等离子体模块中的每个可用接口。

弱形式方程的离散化
本博客是弱公式化系列博客的后续部分。在之前的博客中,我们使用 COMSOL Multiphysics 软件设置并求解了一个典型的弱形式方程,并借助一些简单的物理参数验证了结果。今天我们将深入了解这些方程是如何被离散并数值求解的。

为什么汽车蓄电池在寒冷天气中表现欠佳
如果不提前采取防范措施,那么在冬天寒冷的早晨发动汽车将会是一段令人不愉快的经历。发动机无法启动通常是由于蓄电池发生故障,为什么汽车上的蓄电池比其他零件更加敏感呢?答案就在于蓄电池具备的将化学能转换为电能的能力,当冬天生成的热量最少且低温下获得的热能较少时,这一转换能力就变得很差。

多相催化建模方法
获取异质催化的介绍,异质催化反应中化学物种的主要步骤,吸附-解吸模型,表面反应,以及更多内容…

如何计算声辐射力
你知道吗,物体实际上可以被声音移动?这种效应被称为声辐射,它是一种可在 COMSOL® 软件中分析的声致伸缩现象。

使用完美匹配层和散射边界条件求解电磁波问题
求解波动电磁场问题时,您可能会希望模拟一个包含开放边界的域,即电磁波通过计算域的边界时不会产生任何反射。针对这一问题,COMSOL 提供了几种解决方案。今天,我们将分析如何使用散射边界条件和完美匹配层来截断域,并讨论它们各自的适用范围。

如何对半导体器件执行三维仿真分析
在改进半导体器件研发流程和制造技术的过程中,仿真具有巨大的应用潜力。通过仿真分析可以减少设计过程中所需的试验和制造次数。由于必须解决器件的长度尺度问题,以及半导体物理现象的非线性特性,对三维半导体器件进行建模具有一定的挑战性,往往需要进行计算量非常大的仿真工作。

介电泳分离
电泳是一种通过电场来控制电中性粒子的运动的现象。了解如何在直流和交流电场中模拟这种效应。

使用广义拉伸算子建立旋转模型
您可以使用 COMSOL Multiphysics® 中的广义拉伸算子来模拟暴露在载荷下的旋转物体。现实世界中一个常见的例子是旋转加热食品。