每页:
搜索

带标签的博客文章 技术资料

非线性弹性材料简介

2015年 1月 9日

非线性弹性材料模型的例子:Ramberg-Osgood, Duncan-Chang, Hardin-Drnevich, Power law 等。文中讨论了如何在你的分析中应用非线性弹性材料。

在 COMSOL Multiphysics 中执行弱形式

2015年 1月 6日

这篇博客是弱形式系列博客的组成部分,旨在帮助用户在最小的先决条件下理解弱形式。在第一篇博客中,我们学习了弱形式的基本概念。所有方程停留在解析形式。今天我们将使用 COMSOL Multiphysics 仿真软件来从数值上求解上述方程。我们在此强烈建议您打开 COMSOL 软件,随我们一起操作。

使用传热模块计算角系数

2015年 1月 2日

对在 COMSOL® 中计算角系数感兴趣?有一些用于后处理的算子与用于生成表面与表面方程的算子相对应。阅读博客,了解更多内容。

如何获取疲劳模型参数

2014年 12月 26日

在模拟疲劳时,需要解决两个主要难题。第一个是选择合适的疲劳模型,第二个是获取选定模型的材料数据。在上一篇文章 “我应该选择哪种疲劳模型?“中,我们对第一个问题进行了讨论,并给出了一些解决方法。今天,我们将讨论第二个问题,并介绍如何获取疲劳模型参数。 使用多种不同的模型预测疲劳 疲劳模型是基于物理场假设的,因此被称为唯象模型。不同条件下的疲劳由不同的微观力学原理控制,因此需要建立很多解析和数值关系来包括所有的疲劳类型,而这些疲劳模型又需要专门的材料参数。 众所周知,疲劳测试很昂贵。因为导致疲劳发生的杂质在材料中是随机分布的,所以必须测试许多样本。当用 S-N 曲线将所有的测试结果可视化时,疲劳寿命的差异就可以清楚的呈现出来。 一个 S-N 曲线。黑色方块代表单个疲劳测试。 通过 S-N 曲线获得模型参数的建议 S-N 曲线,也叫 Wöhler 曲线,是最古老的一种疲劳预测方法,所以很有可能材料的数据已经通过这种形式显示出来了。很多时候,这些数据是针对 50% 的失效风险给出的。如果无法获得材料数据,就需要进行测试。 当完成测试后,需要注意统计方面的问题,即在每个载荷水平上,构建 S-N 曲线时需要选择相同的可靠性。这一点很重要,因为 S-N 曲线是以对数尺度表示的,输入的微小差异都会对输出有很大影响。不同可靠性水平的 S-N 曲线需要彼此分开,因此在实际模拟时,应该选择一个合适的水平。对于非关键性结构,50% 的失效率可能是可以接受的。但是,对于关键结构,应该选择一个明显较低的失效率。 当使用不同来源的疲劳数据时,一定要注意确保测试条件和操作条件相同。 运行考虑平均应力的疲劳测试的建议 疲劳测试的另一个方面是考虑对疲劳寿命有很大影响的平均应力。一般来说,在拉伸平均应力下进行的疲劳测试会比在压缩平均应力下进行的测试寿命短。这种影响也经常用 R 值(载荷周期中最小和最大应力的比率)来表示。因此,疲劳寿命会随着平均应力(或 R 值)的降低而增加。 在疲劳模块中,应力-寿命 模型没有考虑到这种影响。当使用这些模型时,需要选择在与操作条件相同的测试条件下获得的材料数据。 在累积损伤模型中,Palmgren-Miner 线性损伤求和法使用了 S-N 曲线。但是,在这个模型中,用 R 值依赖性来指定 S-N 曲线,并考虑了平均应力效应。 平均应力效应。 如果使用了材料库中的数据,并且疲劳数据是用最大应力指定的,那么可以使用以下公式轻松地将其转换为应力振幅: \sigmaa=\frac{\sigma{\textrm{max}}(1-R)}{2} 其中,\sigmaa 是应力振幅,\sigma{max} 是最大应力,R 是 R 值。 获取 Findley 和 Matake 临界平面模型参数的建议 基于应力的模型似乎相当简单。例如,Findley 和 Matake 模型使用的表达式分别为 \left(\frac{\Delta\tau}{2}+k\sigma{\textrm{n}}\right){\textrm{max}} =f 和 \left(\frac{\Delta\tau}{2}\right){\textrm{max}}+k\sigma{\textrm{n}} =f 它们只取决于两个材料常数:f 和 k。然而,这些材料参数是非标准的材料数据,与材料的耐力极限相关。 请注意,两个模型的实际值 f 和 k 是不同的。获取解析关系有些麻烦,因为基于应力的模型是基于临界平面的方法,需要找到一个平面,使上述关系的等式左边最大。这基本上是通过使用莫尔应力圆将剪切应力和法向应力表示为方向的函数,将导数设为零来实现最大化,并简化所得关系。 这里我们不显示数据处理的不同步骤。对于 Findley 模型,材料参数与标准疲劳数据是通过以下等式关系描述的: \frac{f}{\sigma_U(R)} = […]

单色器和光谱仪中的射线追踪

2014年 12月 25日

光谱仪是测量辐射的一些属性的光学设备,这些属性与其频率存在函数关系,而单色仪则用于传输特定频率的辐射。

平行截面上的最大值

2014年 12月 24日

之前的博客文章分享了一种在三维稳态模型中通过平行切面生成动画的后处理技巧。今天,我们将讨论另一个后处理技巧:如何计算并绘制任意变量在多个平行截面上沿轴向坐标的最大值(最小值、平均值或积分)。

使用虚拟操作对几何进行简化

2014年 11月 28日

当我们在 COMSOL Multiphysics 中进行几何建模时,无论使用 COMSOL 软件的内置 CAD工具还是其他的 CAD 系统,最终得到的几何结构的特征有可能会多于实际需要。在本篇博客文章中,我们将介绍一组名为虚拟操作的特征,可以帮助您便捷又快速地简化任意 CAD 数据,为后续的建模和网格剖分工作提供便利。

我应该选择哪种疲劳模型?

2014年 11月 25日

您是否曾经问过自己:“我应该在模拟中使用哪种疲劳模型?” 如果是这样,请阅读这篇博文,全面了解可用的疲劳模块模型。

编辑导入的 CAD 设计

2014年 11月 20日

CAD 导入模块、设计模块和 LiveLink™ 产品超越了 COMSOL Multiphysics® 的功能,采用 CAD 工具修复和准备仿真的几何体。

弱形式概述

2014年 11月 19日

该篇博客将简要介绍弱形式,旨在为没接触过有限元分析和矢算、但对弱形式又有浓厚兴趣的用户提供一些物理及积分方面的基础知识。

模拟大功率激光系统中的热致焦移

2014年 11月 18日

您可以使用射线光学模块创建一个完全合理的激光传播模型,包括热效应和结构效应。在这里,我们将带您一步一步地完成整个过程。

结构力学模块中不同接口的耦合

2014年 11月 4日

结构力学模块由专门的接口组成: 实体力学;用于薄型结构建模的壳、板和膜;以及用于细长结构建模的梁和桁架。

感应耦合等离子体(ICP)中的离子温度

2014年 10月 22日

模拟等离子体时,有多种离子温度选项可供您选择。但您的选择可能会强烈影响模型的结果。我们将讨论现象背后的理论原因,并通过研究感应耦合等离子体 (ICP)示例来展示不同离子温度选项对模型结果的影响。

岩土力学中的屈服面与塑性流动法则

2014年 10月 16日

为了保证岩土工程建设的安全性,在施工时要求具有特定地基和结构加固。实地测试的成本极高,因此仿真就显得非常实用,甚至必不可少。人们开发了很多数值模型来深入研究土壤行为。在这里,我们将向您介绍 COMSOL Multiphysics 中用于研究土壤的运用最为普遍的模型,及对隧道开挖实例进行分析。

RFID 标签读取范围和天线优化

2014年 10月 8日

今天,来自我们认证咨询公司 Continuum Blue 的特约博客作者 Mark Yeoman 将分享一个有关 RFID 应用的数值模型案例。 我们将了解如何应用 COMSOL Multiphysics® 仿真软件来确定被动式 RFID 标签的可读取范围,此类标签通常由读卡器的询问电磁场驱动。此外,我们还将研究如何通过优化标签的天线设计来最大化它的工作范围。

相变:金属的冷却和凝固

2014年 8月 12日

相变:由于温度的变化,物质从一种状态转变为另一种状态。学习如何在连铸工艺中建立相变模型。

电子能量分布函数

2014年 8月 4日

在这里,我们讨论了电子能量分布函数(EEDF)如何影响等离子体建模结果。

参数化扫描、特征频率和瞬态问题的合并解

2014年 7月 28日

在之前的博客文章中,我们讨论了在 COMSOL Multiphysics 中求解稳态问题的合并解特征。本篇博文,我们将介绍参数化扫描、特征频率、频域和瞬态问题的合并解。此外,我们还将合并解与内置的 with 算子和 at 算子进行了对比。

利用对称性简化磁场建模

2014年 7月 14日

介绍在电磁模型中可以利用的3种对称性边界条件。磁绝缘、完美磁导体和 1/8 对称性。

如何在 COMSOL Multiphysics 中合并解

2014年 7月 1日

在工程分析中,经常需要比较在不同工况下获得的解。可能包括比较不同载荷或参数配置的影响,以及在域的每个点上对解进行包络以找到最差或最佳的情况。对于上述每一种情况以及其他类似情况,我们都需要访问多个数据集。

电气设备的对流冷却仿真

2014年 6月 23日

在集群计算的帮助下,我们与 BLOCK transformoren 一起对电感器件的对流冷却进行了建模,以获得最佳性能。

借助多体分析改进高尔夫的挥杆

2014年 6月 6日

打高尔夫时,您的击球不光取决于肌肉力量,与高尔夫挥杆机理相关的其他一些因素会产生更重要的影响。我们将讨论如何通过对高尔夫挥杆的多体分析 来改进您的击球表现。

如何使用 COMSOL Multiphysics 模拟残余应力

2014年 6月 5日

学习如何在结构力学模型中计算残余应力。为了演示,我们使用了一个金属拉深工艺的示例。继续阅读…

使用 COMSOL 理解稳定性方法

2014年 5月 30日

在这里,我们提供了一个质量传输示例模型,以帮助描述稳定方法对您的数值模型的影响。


浏览 COMSOL 博客