最新内容

RF 模块中的集总端口应用指南
可用于射频分析的 4 种不同类型的集总端口以及每种类型适用的不同建模场景的指南。

通过仿真优化锂离子电池设计
在储能系统中发现了大尺寸电池;电动、混合动力和插电式汽车;无人驾驶车辆;轻轨列车;和更多。我们将讨论这些电池组件的建模。

计算平板和波纹板的传热系数
在涉及共轭传热的许多工程应用中(例如,换热器和散热器设计),传热系数的计算很重要。我们经常通过相关性和经验关系来确定传热系数,以获得固体和流体之间的信息。

通过仿真微调压电换能器设计
设计压电换能器本质上是一个多物理问题。请在此查看分析COMSOL®软件中此类设备的示例。

如何合成天线阵列的辐射方向图
您无需使用天线阵列系数就可以通过完整的3D波动方程(节省时间和计算成本)来分析整个结构,而无需对整个结构进行分析就可以研究相控阵天线并对其进行原型设计。

如何使用 Touchstone 文件简化双端口设备模型
假设您正在对一个双端口设备进行建模,并希望减少所涉及的计算资源。 我们演示了一种方法,涉及一个 Touchstone 文件……

RF 模块零件库:一种更简单的射频器件建模方法
有时,模型需要包含连接器。与其花时间为每个连接器创建几何图形,不如简单地从零件库中添加它们。

建立逼真的声悬浮器模型对抗重力
这不仅仅是科幻小说:物体真的可以漂浮。实现这一点的一种方法是利用声波在半空中提升和悬浮粒子。仿真可以拓宽这项技术的使用范围。

使用复合材料技术模拟多层材料
来自 Lightness by Design 公司的客座博主 Eric Linvill 分享了对多层材料采用复合材料建模与实体建模的差异。

通过仿真防止大气腐蚀
某些环境因素,如湿度和雪,会导致大气腐蚀。结果呢?生锈的自行车、汽车和其他金属结构。仿真可以防止这种影响。

使用 COMSOL 模拟多体机构中的流-固耦合
要模拟高级FSI场景,如游泳机制或风力涡轮机叶片周围的气流,您可以使用流体-结构交互作用,配对多物理耦合。

弹塑性金属条颈缩基准模型评估
当对具有特定几何结构的可延展材料样品进行拉伸试验时,会发生一种称为颈缩的现象。在一定载荷下,变形不再均匀,并形成局部“颈缩”。工程技术人员可以使用仿真来预测何时出现这种现象。

如何在 COMSOL Multiphysics® 中模拟不同类型的阻尼
在之前的博客中,我们介绍了在结构中产生阻尼的各种物理现象,并讨论了如何用数学的方法表示阻尼。

结构力学中阻尼的来源及数学理论
当我们敲击由玻璃或金属制成的碗时,会听到清脆的音调而且声音强度会随时间变化而逐渐衰减。理论上,如果不存在阻尼,这种音调将永远不会消失。实际上,碗中产生的动能和弹性势能会通过不同的物理过程转换为其他形式的能量。

使用 COMSOL® 软件预测和优化产品性能
在当今市场中,取得成功意味着既要开发出正常运行的可靠产品,又要在合适的时间推出。与许多其他公司一样,Veryst Engineering 发现仿真是一种有效的工具,可以在原型制作或制造之前研究产品内部,确保设计符合规范。

使用多物理场仿真分析热微执行器
为了设计一个用于特定设备的优化热微致动器,你需要在分析中考虑紧密耦合的电、热和结构现象。

降低潜艇的磁信号
由于船只和潜艇具有磁信号,它们会被敌方防御系统探测到。因此,磁信号的数值分析在船舶的设计和操作中非常重要。然而,与船舶的尺寸相比,用于建造船舶的金属板很薄,这使得利用体网格的标准有限元方法效率低下。

涡流制动系统简介及建模优化
如今,人们对旅行的需求与日俱增,随之而来的是更加环保的交通方式的选择——噪声更小且速度更快。但是不论什么运动最终必须停止,大多数飞机,火车和汽车都使用机械制动,但这种制动方式会造成结构磨损并且在高速时变得不安全。

使用仿真 App 有效分析电荷交换单元设计
电荷交换单元可以改变离子束的电荷,使其可用于核聚变反应堆、粒子加速器和半导体制造设备。但是,由于许多因素(例如输入粒子束的能量、单元几何形状和中性粒子数密度)必须被测试,因为它们会影响设备性能。

动能集合模型中的载流子热输运项
巴塞罗那自治大学(Universitat Autònoma de Barcelona, UAB)的F. Xavier Alvarez讨论了借助COMSOL Multiphysics® 在纳米尺度上模拟传热,从而更好地理解传热过程。

通过菲涅尔棱体仿真研究光的偏振
菲涅耳菱形是研究光偏振的简单光学系统。接下来,我们将模拟菲涅耳菱形中的线偏振光、椭圆偏振光和圆偏振光。

仿真 App 助力 ABB 牵引电机公司实现数字化
下面是一个使用COMSOL Server™优化研发过程的真实例子:在ABB牵引电机公司,工程师们在电机设计中使用模拟应用程序来分析CFD和热量。

在 COMSOL Multiphysics® 中使用几何零件和零件库
使用自己创建的或者从 COMSOL Multiphysics® 软件及其附加产品提供的任何零件库中添加的几何零件,可以大大简化仿真过程中复杂几何结构的构建。本篇博客,我们将向您介绍如何添加和使用几何零件,以及创建用户定义的零件库。 几何零件和零件实例 COMSOL中有许多称之为 几何体素 的 CAD 工具,用于创建几何零件,这些几何体素是一些基本的几何形状,例如块、圆锥、圆柱、球体、棱锥和圆环等三维几何。您可以将这些几何体素组合起来形成更复杂的几何结构用于仿真。 几何零件 提供了一种重现和参数化这类复杂几何图形的方法。当这些图形被添加为 COMSOL Multiphysics® 几何后,可以简化几何创建,提供方便使用的、具有多个参数的零件,用于定制零件的形状或尺寸。 几何零件示例:多体动力学模块零件库中的斜齿轮零件。 被添加为几何零件(直接在模型中创建或从零件库中获取)后,这些图像将成为可用的几何中的 零件实例,看起来就像任何其他几何特征一样,成为仿真中定义完整几何的几何序列的一部分。在几何实例的 设置 窗口中,通过指定 输入参数 的值来定义零件实例的形状、尺寸和位置,这些参数用于定义几何零件以及实例零件的位置和方向(相对于全局坐标系或用户定义的工作平面)。 在模型开发器的 全局定义 下创建几何零件时,可以访问用于定义模型组件几何形状的几何序列中提供的同一个 CAD 特征:所有几何体素;带有相关拉伸、旋转和扫描的工作平面;以及其他几何工具。对于更高级的零件,还可以添加 If、Else If、Else 和 End If 节点来使用编程,例如,使用一些参数来控制零件的某些方面。此外,您还可以添加 参数检查 节点来发现错误,例如用户输入的参数值超出了实际零件的范围。还可以定义几何零件的 1D、2D 和 3D 几何结构。 对于参数化,您可以直接在主要 零件 节点的 设置窗口 中为几何零件添加输入参数。当零件用户将其添加为零件实例时,这些输入参数就可以供零件用户使用。此外,您还可以添加一个 局部参数 子节点来定义在组件中局部使用的其他参数,这些参数不需要用户指定。 使用零件库中的几何零件 COMSOL 零件库中提供的几何零件 COMSOL Multiphysics® 软件及其一些附加产品(模块)中均带有零件库,其中包含许多在每个模块的应用领域中常见并且有用的几何零件: COMSOL Multiphysics® 软件: 带壁的直管和弯管(环形) AC/DC 模块: 多匝线圈 单导体线圈 磁芯 传热模块: 各种各样的散热器 微流体模块: 各种微流体通道 搅拌器模块: 各种类型的叶轮 轴 釜 多体动力学模块: 外齿轮和内齿轮 齿条 射线光学模块: 各种类型的透镜 反射镜 棱镜 分束器 反光镜 RF 模块: 各种类型的连接器 表面贴装器件 波导 […]

数字孪生模型和基于模型的电池设计
通过将高保真多物理场模型与轻量级模型以及实测数据相结合,工程师可以创建数字孪生模型,进而去理解、预测、优化并控制现实界系统。