最新内容
如何使用仿真 App 自动进行电机绕组设计
为了在电机中自动化缠绕设计,您可以结合选择的力量和 Application Builder。请看这里。
如何模拟锂离子电池的短路
电池短路是一个糟糕的故障:电池中储存的化学能会以热能的形式损失掉,而无法为设备所用。同时,短路还会造成严重发热,这不仅会降低电池材料的性能,甚至还可能因为触发热失控而酿成火灾或者爆炸。为了消除设备中可能造成短路的潜在条件,并确保短路不会引起危险的工作状态,我们可以借助 COMSOL Multiphysics® 对锂离子电池的设计进行研究。
使用多物理场建模分析真空干燥机的速度
在某些食品和制药行业中,经常使用不同类型的干燥机来干燥热敏性产品。真空干燥机提供了一个解决方案,从这些敏感物质中去除水和有机溶剂。为了获得最佳的真空干燥机设计性能,工程师需要权衡快速干燥时间和高质量产品的双重需求。为此,您可以使用 COMSOL Multiphysics® 软件研究真空干燥过程。 真空干燥机的优势和功能 从古至今,人们就一直将干燥作为保存食物的一种方法。随着时间的推移,干燥过程从露天干燥或日光干燥逐步扩展到其他干燥技术,例如太阳能干燥,冷冻干燥和真空干燥。从制药到塑料行业等,干燥也是许多应用领域的关键过程。 今天,我们将重点专注于真空干燥的化学过程,这在干燥热敏材料(例如食品和药品)时特别有用。真空干燥机在制药行业通常被称为真空烤箱,同时它还具有其他优点。因为真空干燥机需要在较低的温度下才能运行,所以其消耗的能量更少,从而降低了成本。同时,真空干燥器还能回收溶剂,避免氧化。 旋转真空干燥机。MatyldaSęk 提供自己的作品。通过 Wikimedia Commons 在 CC BY-SA 3.0 下获得许可。 真空干燥机可去除湿粉中的水和有机溶剂。干燥机的工作原理是在真空中降低液体周围的压力,从而降低液体的沸点,并提高蒸发速率。结果,液体会以更快的速度干燥(此过程的另一个主要优点)。 为了使真空干燥有效,我们需要在不伤害产品的前提下减少干燥次数,这意味着我们需要严格控制操作条件。为了平衡这些目标并了解操作条件如何影响产品,可以使用 COMSOL Multiphysics 的多物理场建模功能。 利用多物理场模型分析真空干燥机的干燥速度 今天,我们将分析 Nutsche 过滤干燥机的真空干燥过程。该干燥机的工作原理是从容器的底部和侧壁加热湿的饼,并降低饼顶部的气相压力。该示例基于 Murru 等人发表的论文。(模型文档中的参考文献1)。 首先,让我们近距离查看该模型。该真空干燥机由一个包含湿饼的圆柱滚筒组成,该圆柱滚筒包含三相:固体粉末颗粒、液体溶剂和气体。饼的材料属性需要包括所有三个阶段的属性,这取决于饼中每个阶段的比例变化。每个阶段的部分是由体积分数决定的,这是我们建模的变量之一。 在二维轴对称组件中,将饼建模为半径 40 cm,高 10 cm 的矩形几何形状。在顶部,我们的模型暴露在一个低压顶部空间中。同时,在过滤干燥器的侧面和底部边界处使用热通量边界条件考虑 60°C 的加热流体。 轴对称 Nutsche 过滤干燥机中的真空干燥过程。 接下来,我们的教程结合了蒸发和传热建模,以研究滤饼的液相分布和温度。利用 系数型 PDE 接口计算滤饼的溶剂体积分数,并使用 “ 固体传热” 接口模拟传热。为了解决多孔介质中的水分传输问题,我们在传热模块中使用了预定义的多物理场接口。我们还同时使用热沉和质量沉两项考虑溶剂蒸发,并将溶剂输运作为扩散过程进行近似估算。 我们对模型做出以下假设: 当液相值达到零时,蒸发停止,表明液体已完全蒸发。 当局部蒸气压小于顶空水蒸气压时,蒸发停止,表明蒸发没有驱动力。 当液相的体积分数降至临界值以下时,溶剂中的扩散停止。 在这些情况下,我们可以使用阶跃函数将蒸发速率和扩散系数平滑地降低到零。 我们的烘干机运行速度有多快? 我们可以看到我们的仿真结果和预期结果基本一致。让我们从30个小时后的滤饼开始分析。如下图所示,滤饼的温度在侧边界和底边界都接近加热流体的温度(60°C)。液相的体积分数在这些受热边界附近最低,而在滤饼的中心最高。此外,表观的水分扩散率在滤饼中心是最高的,在液相蒸发的地方几乎为零。考虑到我们模型的假设,这些结果都是在预期中的。 30小时后,滤饼的温度(左),液相的体积分数(中)和表观水分扩散率(右)。 换种方式,让我们扩展时间范围,看看 10、20 和 30 小时后的蒸发速率。这项研究也得到了预期的结果,它显示出蒸发从加热壁开始,并且当这些边界处的溶剂量减少时,蒸发就减少。在此过程中,蒸发前沿移向滤饼的中心。 10(左),20(中)和30(右)小时后的蒸发速率。 通过仿真得到的定量结果与先前的研究结果非常吻合,这验证了它们的有效性。因此,我们可以使用此模型来准确预测产品随时间的干燥程度。利用此信息,我们可以最大程度地减少产品暴露在高温下的时间。此外,如果要减少热敏产品的干燥时间,我们可以更改干燥机的尺寸。通过多物理场仿真,我们可以设计出效率更高的真空干燥机,以用于各种行业。 联系 COMSOL 进行软件评估 探索更多食品和制药行业的建模应用 自己尝试:下载此博客文章中介绍的真空干燥教程 查看以下相关博客文章: 通过仿真优化生物制药工艺 借助仿真 App 探索生物传感器设计中的生物学 利用仿真 App 优化食品加工工艺中的感应加热技术 优化椰枣热加工过程中的水化操作
了解齿轮建模的不同因素
要准确模拟一个齿轮并获得有用的结果,重要的是考虑设备设计背后的一些因素以及它们是如何建模的。COMSOL Multiphysics® 软件的一些新特性和功能为您提供了处理此类特性的工具,从而提高了仿真研究的可靠性。今天,我们将回顾齿轮建模的各种元素,并解释如何在我们的建模过程中考虑它们。
麻省理工学院 PSFC 设计了可缓解等离子体破裂的托卡马克装置
若能开发出一种可控核聚变发生装置,则可以为地球提供几乎无限的清洁能源。工程师们从 20 世纪 50 年代便开始了热核聚变的研究,时至今日他们仍在努力将这一目标变成现实。其中一种方法是使用名为托卡马克的磁约束装置。让我们一起了解一下,为何麻省理工学院(MIT)等离子体科学与聚变中心(Plasma Science Fusion Center,简称 PSFC)的工程师们会将目光转向借助仿真来解决托卡马克装置设计中的关键问题:等离子体破裂引起的不稳定性。
如何在 COMSOL Multiphysics® 中模拟大应变粘弹性
粘弹性形变广泛存在于众多的聚合物和生物组织中,即使外部载荷恒定不变,形变也会随着时间逐渐变化。线性粘弹性是一种常用近似,假设应力与应变和应变速率之间满足线性关系。我们通常认为形变的粘性部分具有不可压缩性,因此物质的体积形变近乎纯弹性。除了线性粘弹性之外,COMSOL Multiphysics® 5.2a 还能精确地模拟大应变粘弹性。下文将通过一个生物医学中的应用说明如何使用这种材料模型。
借助 COMSOL Multiphysics® 分析搅拌器的设计元素
搅拌器因用途广泛而成为了许多现代工业领域中不可或缺的装置。如果您正在思考如何提高搅拌器设计流程的效率,那么一个能够混合搭配不同搅拌器元素的仿真工具定能助您一臂之力。借助 COMSOL Multiphysics®,您可以创建符合自身需求的搅拌器几何模型。今天,我们将讨论平底搅拌器的层流混合建模问题,以及如何使用 k-ε 和 k-ω 湍流模型来处理碟形底搅拌器中的两个湍流混合问题。
通过仿真 App 了解 FitzHugh-Nagumo 模型的动力学原理
1961 年,R. Fitzhugh (参考文献1) 和 J. Nagumo 提出了一个模型,用于模拟在生物体的可兴奋细胞中观察到的电流信号。
变化极限的积分和求解积分微分方程
学习如何分析变化极限的空间积分,无论它们是明确指定的还是隐式定义的。(第二部分,共2部分)
基于方程的轴对称组件建模指南
柱坐标系对于高效求解和后处理旋转对称问题而言很有用。COMSOL Multiphysics® 软件为轴对称物理场接口中的柱坐标系提供了内置支持。当您使用数学接口对定制的偏微分方程(partial differential equation,简称 PDE)进行定义时,请务必仔细辨明它们的意义。
模拟甲烷均质充量压燃(HCCI)以优化发动机点火控制
环境问题日益严重,迫使人们必须提高燃料效率和减少排放,这一需求激发了人们对传统点燃式及压燃式发动机的替代产品的研究兴趣。虽然采用均质充量压缩燃烧(homogeneous charge compression ignition,简称 HCCI)技术的发动机是一个可行的解决方案,然而尚存在例如点火时间难以控制等诸多难题,使得这项技术仍然面临着巨大的挑战。借助 COMSOL Multiphysics® 一类的仿真工具,您便可以分析 HCCI 发动机的燃烧过程,获取相关的有利信息,并最终发现改进点火控制技术的突破口。
高效计算穿孔板的声学转移阻抗
消音器等装置中的孔眼可使部分声音在消声室间和管道内外传播,从而达到消声的效果。当模拟穿孔板时,我们可以绘制出每一个小孔并进行网格剖分,但这会增加求解模型所需的时间。一种更有效的办法就是使用半透明边界。在本文中,我们将讨论几种使用了半透明边界的技术,并介绍一种可计算穿孔板转移阻抗的方法。
改进的四面体单元网格剖分功能
为了优化用户的建模过程,我们须不断努力改进软件的网格剖分功能。就在近期,COMSOL Multiphysics® 软件的四面体网格的生成算法实现了升级。在本篇博客文章中,我们将对生成四面体网格的具体步骤进行讲解,让您深入体验改进的网格剖分功能及其相关特征,同时我们还将探讨如何利用这一功能获得更加精确的仿真结果。
仿真助力减少航空发动机涡轮风扇的噪声
飞机涡轮发动机中的涡轮风扇是主要的飞行噪声源之一。过量的噪声可能会引发一系列健康问题,例如听力障碍、睡眠紊乱和压力疾病。声学建模可以帮助您优化涡轮风扇发动机的设计,减少噪音污染及其负面影响。我们将通过喷射管教程模型,阐明使用声学建模方法的好处。
三维带电粒子束的相空间分布取样
在本系列的上一篇博客文章中,我们阐释了在为真实带电粒子束的释放和传播建模过程时,需要考虑的两个必要概念。首先,我们引入了纯数学意义上的概率分布函数,然后探讨了一种特定的分布类型——二维带电粒子束的横向相空间分布。在本篇文章中,让我们结合所学知识,探究如何对这一类分布中的三维粒子束的初始位置和速度进行取样。
了解近轴高斯光束公式
近轴高斯光束公式可用于描述高斯光束。 了解如何在 COMSOL Multiphysics 中使用该公式。
在 COMSOL Multiphysics® 模型中高效地定义材料
COMSOL Multiphysics® 软件中内置了许多类型的材料,可以帮助您优化建模流程。除了这些内置的材料,该软件还拥有许多强大的特征和功能,让您得以高效地定义模型中的几何实体的材料。在定义材料、指定材料的属性,以及比较不同的材料对仿真结果的影响等方面,这些工具都能帮助我们大幅提升建模效率。在本篇文章中,我们将通过三段视频教程,向您展示这些工具的使用方法。
二维带电粒子束的相空间分布和发射度
在“束流物理中的相空间分布”系列博客中,我们介绍了概率分布函数(probability distribution function,简称 PDF)的含义,以及 COMSOL Multiphysics® 软件中的多种取样的方法。若要探究离子束和电子束是如何在真实环境中传播的,那么有关 PDF 的专业知识是必不可少的。在本篇文章中,我们将重点探讨相空间 和发射度 的概念,以及如何利用他们来描述束流离子或电子的释放问题。
从概率分布函数中抽取随机数
本系列博客将深入探讨粒子追踪技术在离子束和电子束仿真中的应用。我们首先会介绍概率分布函数(probability distribution function,简称 PDF)的背景知识,并展示在 COMSOL Multiphysics® 软件中对其进行随机抽样的多种方法。在后续文章中,我们还将演示如何基于该数学理论来精准地模拟真实环境中离子束和电子束的传播。
改进后的 STL 和 NASTRAN® 文件导入功能及其操作技巧
在为与几何和网格相关的问题提供技术支持时,我们注意到,越来越多用户开始使用由 3D 扫描得到的 STL 文件和 NASTRAN® 文件格式的网格来创建几何。对此类真实物体进行模拟是一项非常具有挑战性的工作,而其中最难的部分是创建几何。现在,新版本的 COMSOL Multiphysics® 软件让此类文件的处理工作变得简单。阅读文章,了解如何使用此项功能,以及如何利用导入的 STL 和 NASTRAN® 文件进行几何创建。
混合法在裂隙通量守恒中的应用
今天的特约作者,是来自 COMSOL 认证咨询机构 — Boffin Solutions 有限责任公司的 Ionut Prodan,他将会和我们一起讨论运用混合方法计算薄层结构中的裂隙流动建模。 当在三维多孔基体中对薄层裂隙进行建模时,您可以通过裂隙流接口将它们模拟为二维对象,以有效地描述其压力场。然而,很多时候,我们对裂隙通量的计算更感兴趣,例如非常规储层中的水力压裂。让我们来看看混合方法是如何攻克这些难题的。
更具灵活性的全新反应流多物理场接口
在最近几个版本的 COMSOL Multiphysics® 中,我们陆续添加了多个新的多物理场接口,将基本的物理场接口分解成单独的接口,并在模型树的“多物理场”节点中预定义了多物理场之间的耦合。这一更新完美地结合了基本物理场接口的灵活性与预定义多物理场耦合友好的用户体验。最新的 COMSOL Multiphysics® 5.2a 版本也不例外,为我们呈现了全新的反应流 多物理场接口。
通过标准模型展示压电换能器设计的有效结果
如今,许多新型设备都应用到了压电效应。在对此类设备的设计进行分析时,您一定希望获得准确可靠的结果。COMSOL Multiphysics® 仿真软件便能帮助您快速获取准确的结果。为了证明这一点,我们特意创建了一个压电换能器的标准模型。
借助仿真保证冷藏车的制冷效率
为了避免运送物品变质,冷藏车必须保持低温。因此优化车辆的隔热材料和制冷系统是设计中的一项重要流程。为了确保制冷设备在开-关门的过程中的运行效率,法国液化空气集团(Air Liquide)联手 COMSOL 认证咨询机构 SIMTEC,使用 COMSOL Multiphysics® 软件执行了传热与 CFD 耦合仿真。