模拟射频加热的 5 种方法

作者 Walter Frei
2023年 5月 4日

COMSOL® 多物理场软件非常适合用于射频(RF)加热仿真,在这个过程中,需要同时求解电磁场和温度随时间的分布。大家可能会认为,凡是涉及 RF 加热的问题,都需要使用 RF 模块来求解,但在大多数情况下,我们也可以使用 RF 模块或者 AC/DC 模块求解。对于一些典型问题,我们还以使用多种不同的物理场接口求解。接下来,让我们了解更多内容!

目录

  1. 简介
  2. 通过电磁波接口求解
  3. 通过电流接口求解
  4. 通过磁场和电场接口求解
  5. 其他2种方法
  6. 结束语

简介

在开始电磁仿真时,使用 COMSOL Multiphysics® 中的哪个接口?这个问题有时会引起很大的争议。在博客文章《在 COMSOL 中可以使用哪个模块进行电磁模拟?》中,我们对此做了一些较深入地介绍。然而,有时不同接口适用的频率范围存在明显的重叠,因此使用不同的建模方法可能会产生相同的结果。知道这一点很重要,因为不同的方法有不同的优势。例如,一些方法具有较低的计算成本,而计算成本较高的方法可以提供更多的结果。

需要强调的是,这些重叠的频率范围可能非常具体,我们应该仔细地相互验证。为了证明这一点,这篇博客,我们将讨论一个可以使用不同方法求解的示例。下图为我们将要模拟的系统。

一个插入充满了有损耗的介电材料样品的金属腔中的同轴探针模型。
模拟系统:一个同轴探头插入一个充满了有损耗的介电材料样品的金属腔中。

如上图所示,RF 源通过同轴电缆与插入金属圆柱形腔体(高 2 cm, 直径 2 cm)中的简单探头相连,该腔体内充满了我们想要加热的有损材料。探头是同轴电缆的延伸,绝缘层和导体暴露在腔体外并且做了光滑处理。 我们将考虑的频率范围是 100 kHz–1 GHz。

空腔内的材料是有损耗的介电材料,在所有要求解的频率范围内,相对介电常数为 50,电导率为 30 mS/m。虽然没有一种材料可以在所有频率下都具有恒定的特性,但我们可以假设材料在某些范围内几乎具有恒定的特性。腔壁和同轴电缆的金属电导率为 6e7 S/m,与铜的电导率相同。同轴电缆内部和周围绝缘体的相对介电常数为 1.75,电导率为 1e-12 S/m 。内导体半径为 0.25 mm,外导体半径为 0.75 mm,形成一根具有 50 欧姆阻抗的低损耗同轴传输线。

使用电磁波物理场接口求解

我们将从最高频率 1 GHz 开始建模。因为该频率接近于腔体谐振频率,所以需要使用 RF 模块的电磁波,频域 物理场接口建模。关于特征频率,我们可以通过对这个有损耗的电介质填充的腔体进行特征频率分析,严格地得出这个结论。还有一个必须更加严谨地考虑的问题是:我们使用该接口可以求解多低的频率,以及应该使用哪些边界条件?

关于边界条件,我们知道金属的集肤深度在大部分频率范围内都非常小,因此应该先建立阻抗 边界条件,而不是模拟金属域内部的电磁场。最终,我们希望在最低频率范围内更仔细地检查该条件是否适用,因为在 100kHz 时集肤深度与同轴电缆的厚度差不多。通过表征无损耗的电连接的 完美电导体 边界条件将同轴电缆的外导体与腔壁进行电连接。

经常会有人认为空腔壁和外导体是接地的,但是正如我们在博客文章《模拟波状电磁场中的电压和接地》中所讨论的那样,我们应该使用更严谨和准确的术语,简单来说,就是不应该将导电材料看作是接地的,而是低阻抗的导电表面。

对于激励边界条件,我们通过同轴电缆 类型的集总端口 边界条件,将 类型设置为功率,来模拟同轴传输线和源之间的连接。该条件被应用在内导体和外导体之间的环形边界上,也可以使用这个条件模拟任何其他类型的横向电磁 (TEM) 传输线,详细可以参考我们学习中心的文章《模拟 TEM 和准 TEM 传输线》。

应用集总端口 边界条件模拟延伸至无穷远的无损传输线的连接,向集总端口 添加激励意味着无穷远处有一个源向线路发送信号并进入模拟域。该信号的一部分在域和阻抗边界条件内以热量的形式耗散,另一部分被反射回来。我们最终想要通过模型计算的是耗散的热量。了解有多少输入信号被反射回来也很有用,它可以由 S 参数量化。

同轴探针的特写图。显示了很多小箭头指向远离探针的顶部。
介电材料样品在 100MHz 时的损耗,箭头表示电场。

我们将在整个感兴趣的频率范围(100 kHz–1 GHz)内求解该模型,并计算样品介电材料的 S 参数和总温升。但是,在更低的频率下,将会出现一个我们无法再解析出的点。这是可以预测到的,因为电场开始接近静态极限。因此,全波公式不再适用,我们必须寻找其他方法。

通过电流接口求解

在非常低的频率(远低于 100 kHz)下,这就变成了一个可以用电流 物理场接口求解的问题,它求解的是(标量)电势而不是(矢量)电场。 让我们研究一下在仍然能获得相似结果的情况下,使用这个接口可以求解的最高频率是多少。

使用电流 物理场接口时,边界条件是不同的。首先,当接近静态极限时,需要设置一个接地 边界条件,并且需要对此条件进行清晰的定义:沿着该边界上两点之间的任何路径的电场积分为零。有关直流情况的详细讨论,请参阅我们的博客文章《电压和接地存在吗?》虽然我们知道这个接地 边界条件在非常高的频率下是没有物理意义,但我们仍然会使用它,并想看看随着频率的上升,它与电磁波解的吻合程度如何。接地 条件适用于外导体的所有表面、腔壁以及连接二者的表面。

COMSOL Multiphysics用户界面显示了模型开发器,突出显示了终端边界条件,以及展开终端部分的相应设置窗口。
COMSOL Multiphysics® 用户界面,显示了 终端 > 终止类型。

内导体的表面通过终止 类型的终端 边界条件进行激励,用于创建与指定阻抗的传输线的连接,如上图所示。它在物理上的解释类似于我们之前在电磁波 接口中使用的集总端口 边界。其余的边界条件,即内外同轴导体之间绝缘体的环形边界,设置为电绝缘。这意味着电场将与该边界平行,这是同轴电缆内部电场的预期解。

我们根据填充腔体的样品材料随频率变化的总损耗来比较这两种方法。下图显示了这两个模型在非常宽的频带上具有一致的结果;从 100 kHz 到近 100 MHz,解都非常一致。预计这两种方法将在非常高的频率下具有不同的结果,但需要注意的是,很难提前估计发生这种情况的频率,具体取决于几何形状、材料属性和边界条件。在实践中,如果您有任何疑问,推荐的方法是建立两个模型并进行结果比较。

使用电磁波接口的方法与使用电流接口的方法的1D对比图。
电磁波 电流物理场接口的模拟结果比较。在很宽的频带范围内二者具有一致的解。

关于这个模型,我们应该有一个问题,那就是关于我们之前所做的一个假设。 我们曾假设,在电磁波 模型中,金属中的集肤深度与导体的尺寸相比较小,进而假设金属域的体积内的场是均匀的,因此不需要求解。所以我们在之前的两个模型中都是通过边界条件对金属域进行建模的。在下一个例子中,我们可以检查这个假设是否正确,并求解导体内的集肤效应。

通过磁场和电场物理场接口求解

第三种方法,我们使用磁场和电场 物理场接口求解。简单的说,这个接口可以被认为是前两个接口的组合,尽管它有一个更加正式的名称:A-V 公式(A-V formulation),并且它对电场具有的独特的定义,详细请阅读博客文章《理论介绍:什么是规范固定》 ”。从计算复杂性的角度来看,这种方法的计算成本最高,因为它在所有域中求解标量电势场和磁矢量势场,如果想在集肤深度非常小的频率下求解金属域,则需要边界层网格。在这篇博客中,我们将避免划分边界层网格,只在 100kHz – 1MHz 频率范围内求解。如果在这个范围内与其他两种方法的结果一致,那么我们就可以合理地推断其他计算量较小的方法是合适的。

关于边界条件,我们可以再次在圆柱体壁上使用阻抗 边界条件,其余边界在同轴电缆的横截面处都是磁绝缘 类型,这意味着磁场将平行于这些边界,并且电场没有与边界相切的分量。磁绝缘 边界条件还包括一些额外指定了边界法向电场分量条件的子功能。

磁场和电场接口的边界条件示意图;包含了接地、电绝缘、终端和阻抗边界条件标签。
磁场和电场接口中的边界条件示意图。

首先,在内导体的边界上应用终止 类型的终端 条件,这与电流 物理场接口的情况类似。接下来,在同轴电缆内部绝缘体的边界上应用电绝缘 ,最后,在外导体的环形边界以及同轴电缆外部绝缘的周围环形边界上应用接地 条件。这样就完成了腔壁和外导体之间的电连接。

比较了使用电磁波接口、电流接口以及磁场和电场接口的结果的 1D 图。
在逐渐降低的频率上,使用 磁场和电场接口方法与使用其他方法的结果比较。

在 100 kHz – 1 MHz 频率范围求解这个问题,并将结果与之前的结果进行比较,如上图所示。我们看到了近乎完美的一致性,因此有理由说使用电流 物理场接口或电磁波 物理场接口是等效的,而且通常更优越,因为它们的计算成本较低。通过磁场和电场 模型,我们可以应用电压和接地边界条件,正确理解这些术语在非零频率下的解释,并可以获取金属域中的损耗。该数据证实了以下假设是正确的,即与充满空腔的介电材料内的损耗相比,金属中的损耗相对较小,同时也进一步验证了其他方法的正确性。

其他方法

在这篇博客中,我们介绍了三种不同的建模方法,它们在一定频率范围内生成了相同的结果。现在,我们来看看两种其他方法。

使用电磁波,频域 物理场接口的第一种建模方法可以在 AC/DC 模块中的磁场 物理场接口精确地再现。该接口提供了相同的阻抗集总端口 边界条件。磁场 接口中的磁绝缘 边界条件在功能上与电磁波 接口的完美电导体 边界条件相同。对于这个特定问题,这两个物理场接口将给出相同的结果。这就提出了一个问题,为什么我们应该使用电磁波,频域 接口而不是磁场 接口。

当需要应用不同的边界条件时,两者之间的区别就会出现。我们在这里考虑的情况是,电磁波被限制在一个空腔内,能量只能通过传输线馈入或离开这个空腔。 (这种现象包含在集总端口 特征中。) 这种特殊情况可以使用两个接口等效处理。相反,如果我们想考虑电磁波没有被限制或完全消散在域内,而是可以向周围辐射的情况,那么需要电磁波 物理场接口的一组独特的非反射条件来截断建模域。我们可以使用散射 边界条件,或者完美匹配层 域条件来模拟非反射边界,相关例子可以参阅我们的博客文章《使用完美匹配层和散射边界条件解决电磁波问题》。

还值得注意的是,无论是电磁波,频域 物理场接口还是磁场 物理场接口,我们都可以求解金属域内的场和损耗,并在 100 kHz – 1 MHz 频率得到与磁场和电场 物理场接口相同的解。这就提出了一个问题,为什么我们应该使用磁场和电场 物理场接口?在可能存在明显感应电流的模型中,它的优势在于可以求解 100 kHz 及以下的较低频率。就像我们这篇文章中的示例模型中显示的那样,仅考虑传导电流和位移电流则可以很好地通过电流 物理场接口求解。

最后,让我们看看是否可以通过电流 物理场接口更简单的解决这个问题。虽然我们模拟的是绝缘体和有损介电材料中的电场和电流,但现在让我们来看看是否可以忽略绝缘体中的场。尽管绝缘体中存在位移电流,但这些电流尤其在较低频率下并不占主导。也就是说,如果频率范围足够低,电流 模型可以仅在介电材料样品中求解。默认情况下,现在绝缘材料的边界全部为电绝缘

下图显示了文中介绍的所有 5 种方法的比较。可以看到,最简单的方法在较宽的频带上可以得到与其他方法基本相同的解,而且计算成本更低。

使用电磁波接口、电流接口、磁场和电场接口、磁场接口和简化的电流接口的结果比较的 1D 图。
所有 5 种方法的比较。

结束语

通过文中演示的建模示例,我们可以得出以下结论:针对某些特定问题,用于求解麦克斯韦方程组的不同物理场接口(不同方法)可以在较宽频率范围内产生几乎相同的结果。但需要注意,这些接口之间重叠的频率适用范围很大程度上取决于材料属性、边界条件和所模拟的几何形状。

当您不知道应该使用哪个电磁物理场接口进行求解时,需要比较几种不同的方法,就像我们在这篇博客中所做的一样。这样做的好处是,您可以为您的仿真找到一种计算效率更高的方法。

文中介绍的模型文件可从 COMSOL 案例库中下载:


评论 (0)

正在加载...
浏览 COMSOL 博客