每页:
搜索

通用 博客文章

使用事件接口模拟温控器

2015年 2月 19日

温控器 装置的作用是感测系统温度,并基于温度信息控制系统中的加热器和冷却器,使系统温度始终接近期设定值。温控器种类众多,我们今天只重点介绍一种利用两个设定点自动打开或停止加热器的温控器。这种温控器被称为开关式 控制器或继电式 控制器,我们可以使用 COMSOL Multiphysics 的事件 接口对其进行模拟。

对周期性热负荷进行建模

2015年 2月 16日

我们经常收到关于周期性或脉冲性热负荷的建模问题。也就是一个热负荷在已知时间内反复启用和停用的情况。使用COMSOL Multiphysics 中的事件 接口,我们可以轻松、准确并且高效地对这种情况进行建模。这篇文章,我们将为您介绍这种建模技术,它适用于多种类型的瞬态仿真,在这些仿真中,负荷的变化发生在已知时间内。 编者注:这篇博客于 2022 年 10 月 4 日更新,以反映更新后的建模功能。 瞬态仿真简介 首先,我们先从概念上来简单了解一下在 COMSOL Multiphysics 中求解瞬态问题时使用的隐式时间步进算法。这些算法根据用户指定的容差来选择时步。虽然这允许软件在求解中出现渐变时采取非常大的时间步进,但缺点是使用太宽的容差会跳过某些瞬态事件。 为了理解这一点,我们以一个普通微分方程为例来说明: \frac{\partial u}{\partial t} = -u + f(t) 其中,强制函数 f(t) 是一个从 ts 开始,在 te 结束的矩形单位脉冲。给定初始条件 u0=1,我们可以用解析法或数值法在任意时间长度上求解这个问题。 如上图所示,在解析解的图中,当激励函数为零或一时,我们可以观察到解呈指数下降和上升。为了求解这个问题,我们使用默认的瞬态求解器,来看看两个不同相对容差的数值解: 相对容差为 0.2 和 0.01 时的数值解(红点),并与解析结果(灰线)进行了比较。 从上面的图中我们可以看到,非常宽松的相对容差 0.2 并不能准确描述负荷的变化。当设置比较严格的相对容差 0.01 时,得到了合理的解。我们还可以观察到,点的间距显示了求解器所使用的不同时间步进。很明显,在解变化缓慢的情况下,求解器采用了较大的时间步进,而在启用和停用热负荷时采用了较小的时间步进。 然而,如果容差设置得太宽松,当热负荷的宽度变得非常小时,求解器可能会完全跳过热负荷的变化。也就是说,如果 ts 和 te 移动到相互非常接近时,对于指定的容差来说总热负荷太小。当然,我们可以通过使用更严格的容差来缓解这种情况,但还有一个更好的选择。 我们可以通过使用显式事件 来避免收紧容差,显式事件 是一种让求解器知道它应该在一个指定的时间点评估解的方法。从这个时间点向前,求解器将继续像以前一样,直到达到下一个事件。让我们看看上述问题的数值解决方案,在 ts 和 t_e 时间段内采用显式时间,以 0.2 的相对容差进行求解,这是一个非常宽松的容差: 使用 显式事件时的数值解,即使采用非常宽松的相对容差 0.2,与解析结果相比也相当吻合。在远离事件的位置,要采取大的时间步进。 上图说明,每当启用或停用负荷时,显式事件 功能就会产生一个时间步进。宽松的相对容差允许求解器在解逐渐变化时采取大的时间步进。在事件发生后立即采取小的时间步进,以使解的变化得到良好的求解。因此,我们既能很好地解决热负荷的启停问题,又能采取大的时间步进,使整体计算成本最小。 现在,我们已经介绍了相关的概念,接下来,我们来看看如何实现这些显式事件。 一个传热的例子 我们来看一个 COMSOL Multiphysics 案例库中的例子,并稍作修改以包括周期性热负荷和事件 接口。在硅晶片激光加热例子中,激光被建模为分布式热源,在旋转的硅晶片表面来回移动。 激光热源本身沿着中心线在晶圆上来回穿越,周期为 10s。为了尽量减少加热过程中晶圆上的温度变化,我们希望在热源位于晶圆中心的时候周期性地关闭激光。 为了建立这个模型,首先我们引入一个事件接口,并在其中定义一个离散状态 变量。这个变量的名字是 ONOFF,它的初始值是 1,如下面的截图所示。 事件接口中的 离散状态屏幕截图。 我们可以使用离散状态 变量来修改代表激光热源的施加热流,如下图所示。 使用 […]

弱形式方程的离散化

2015年 2月 9日

本博客是弱公式化系列博客的后续部分。在之前的博客中,我们使用 COMSOL Multiphysics 软件设置并求解了一个典型的弱形式方程,并借助一些简单的物理参数验证了结果。今天我们将深入了解这些方程是如何被离散并数值求解的。

特殊绘图类型:极坐标、远场和粒子追踪绘图

2015年 2月 2日

在最近的后处理系列博客中,我们演示了流体、力学、化工及电气应用中常用的几种绘图类型。在本系列接下来的几篇博客中,我们会介绍一些不太常用的、仅针对特定应用的绘图类型,还将介绍其他一些您可以用于改进图形化显示的工具。本篇博客中,我们将重点介绍极坐标图、远场图和粒子追踪图。

使用完美匹配层和散射边界条件求解电磁波问题

2015年 1月 28日

求解波动电磁场问题时,您可能会希望模拟一个包含开放边界的域,即电磁波通过计算域的边界时不会产生任何反射。针对这一问题,COMSOL 提供了几种解决方案。今天,我们将分析如何使用散射边界条件和完美匹配层来截断域,并讨论它们各自的适用范围。

介电泳分离

2015年 1月 23日

电泳是一种通过电场来控制电中性粒子的运动的现象。了解如何在直流和交流电场中模拟这种效应。

使用广义拉伸算子建立旋转模型

2015年 1月 14日

您可以使用 COMSOL Multiphysics® 中的广义拉伸算子来模拟暴露在载荷下的旋转物体。现实世界中一个常见的例子是旋转加热食品。

非线性弹性材料简介

2015年 1月 9日

非线性弹性材料模型的例子:Ramberg-Osgood, Duncan-Chang, Hardin-Drnevich, Power law 等。文中讨论了如何在你的分析中应用非线性弹性材料。

在 COMSOL Multiphysics 中执行弱形式

2015年 1月 6日

这篇博客是弱形式系列博客的组成部分,旨在帮助用户在最小的先决条件下理解弱形式。在第一篇博客中,我们学习了弱形式的基本概念。所有方程停留在解析形式。今天我们将使用 COMSOL Multiphysics 仿真软件来从数值上求解上述方程。我们在此强烈建议您打开 COMSOL 软件,随我们一起操作。

后处理技巧 – 流线图

2014年 12月 29日

上个月,我们学习了如何使用等值线(以及对应的三维等值面)来显示滑轮应力和扬声器中的声频。在本后处理系列中,我们将继续探讨使用流线图来可视化流体流动。

如何获取疲劳模型参数

2014年 12月 26日

在模拟疲劳时,需要解决两个主要难题。第一个是选择合适的疲劳模型,第二个是获取选定模型的材料数据。在上一篇文章 “我应该选择哪种疲劳模型?“中,我们对第一个问题进行了讨论,并给出了一些解决方法。今天,我们将讨论第二个问题,并介绍如何获取疲劳模型参数。 使用多种不同的模型预测疲劳 疲劳模型是基于物理场假设的,因此被称为唯象模型。不同条件下的疲劳由不同的微观力学原理控制,因此需要建立很多解析和数值关系来包括所有的疲劳类型,而这些疲劳模型又需要专门的材料参数。 众所周知,疲劳测试很昂贵。因为导致疲劳发生的杂质在材料中是随机分布的,所以必须测试许多样本。当用 S-N 曲线将所有的测试结果可视化时,疲劳寿命的差异就可以清楚的呈现出来。 一个 S-N 曲线。黑色方块代表单个疲劳测试。 通过 S-N 曲线获得模型参数的建议 S-N 曲线,也叫 Wöhler 曲线,是最古老的一种疲劳预测方法,所以很有可能材料的数据已经通过这种形式显示出来了。很多时候,这些数据是针对 50% 的失效风险给出的。如果无法获得材料数据,就需要进行测试。 当完成测试后,需要注意统计方面的问题,即在每个载荷水平上,构建 S-N 曲线时需要选择相同的可靠性。这一点很重要,因为 S-N 曲线是以对数尺度表示的,输入的微小差异都会对输出有很大影响。不同可靠性水平的 S-N 曲线需要彼此分开,因此在实际模拟时,应该选择一个合适的水平。对于非关键性结构,50% 的失效率可能是可以接受的。但是,对于关键结构,应该选择一个明显较低的失效率。 当使用不同来源的疲劳数据时,一定要注意确保测试条件和操作条件相同。 运行考虑平均应力的疲劳测试的建议 疲劳测试的另一个方面是考虑对疲劳寿命有很大影响的平均应力。一般来说,在拉伸平均应力下进行的疲劳测试会比在压缩平均应力下进行的测试寿命短。这种影响也经常用 R 值(载荷周期中最小和最大应力的比率)来表示。因此,疲劳寿命会随着平均应力(或 R 值)的降低而增加。 在疲劳模块中,应力-寿命 模型没有考虑到这种影响。当使用这些模型时,需要选择在与操作条件相同的测试条件下获得的材料数据。 在累积损伤模型中,Palmgren-Miner 线性损伤求和法使用了 S-N 曲线。但是,在这个模型中,用 R 值依赖性来指定 S-N 曲线,并考虑了平均应力效应。 平均应力效应。 如果使用了材料库中的数据,并且疲劳数据是用最大应力指定的,那么可以使用以下公式轻松地将其转换为应力振幅: \sigmaa=\frac{\sigma{\textrm{max}}(1-R)}{2} 其中,\sigmaa 是应力振幅,\sigma{max} 是最大应力,R 是 R 值。 获取 Findley 和 Matake 临界平面模型参数的建议 基于应力的模型似乎相当简单。例如,Findley 和 Matake 模型使用的表达式分别为 \left(\frac{\Delta\tau}{2}+k\sigma{\textrm{n}}\right){\textrm{max}} =f 和 \left(\frac{\Delta\tau}{2}\right){\textrm{max}}+k\sigma{\textrm{n}} =f 它们只取决于两个材料常数:f 和 k。然而,这些材料参数是非标准的材料数据,与材料的耐力极限相关。 请注意,两个模型的实际值 f 和 k 是不同的。获取解析关系有些麻烦,因为基于应力的模型是基于临界平面的方法,需要找到一个平面,使上述关系的等式左边最大。这基本上是通过使用莫尔应力圆将剪切应力和法向应力表示为方向的函数,将导数设为零来实现最大化,并简化所得关系。 这里我们不显示数据处理的不同步骤。对于 Findley 模型,材料参数与标准疲劳数据是通过以下等式关系描述的: \frac{f}{\sigma_U(R)} = […]

平行截面上的最大值

2014年 12月 24日

之前的博客文章分享了一种在三维稳态模型中通过平行切面生成动画的后处理技巧。今天,我们将讨论另一个后处理技巧:如何计算并绘制任意变量在多个平行截面上沿轴向坐标的最大值(最小值、平均值或积分)。


浏览 COMSOL 博客